
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 07
Event – Driven Schedulers

Welcome to this lecture. So far, we had looked at the clock driven schedulers which are

efficient used in very simple applications. Many small embedded applications use

schedulers like cyclic schedulers table driven schedulers, but more sophisticated

applications use event driven schedulers. We had seen a very simple event driven

scheduler the foreground background scheduler in the last lecture. Now let us continue

from that point onwards.

(Refer Slide Time: 00:57)

We had discussed that the scheduling points for event driven schedulers are when the

task arrives or a task completes because these two events of concern either when a task

instance becomes ready or a task instance completes execution then the scheduler wakes

up the code for the scheduler start running to decide which task to run next. So, that is a

very basic principle of this event driven schedulers.

Now let us look further; there are many types of event driven schedulers and these are

the one which are extensively used in non trivial applications these are called as the

preemptive schedulers because for a higher priority task these schedulers pre-empt, the

lower priority task the cyclic schedulers are non preemptive in the sense that once a

frame is assigned to a task it will continue to run in that frame whereas, here depending

on which task instance gets ready the executing task instance may get preempted. So, the

operating system is much more sophisticated here it should be able to preempt a task,

these are also called as Greedy schedulers.

(Refer Slide Time: 02:51)

These are greedy schedulers because whenever a task completes it takes up the task that

are waiting, it never tries to leave any time this processor unutilised. So, the processor is

made never idol, if there is a task that is ready that is why these are called as a greedy

class of schedulers.

(Refer Slide Time: 03:27)

As I was saying that a large number of event driven schedulers are available, but then if

we look at all those we find that those are basic variations of two main types of

schedulers one goes by the name earliest deadline first and the other is rate monotonic

analysis EDF; earliest deadline first and rate monotonic analysis. These are the two

major types of schedulers and all others hundreds of other event driven schedulers are

minor variations of these, if we understood these 2 schedulers, I think we know a good

deal about event driven schedulers. So, let us look at these 2 types of schedulers

carefully.

(Refer Slide Time: 04:26)

The rate monotonic algorithm is example of a static priority scheduler a static priority

scheduler is a one where the designer assigns priority to tasks during his design and once

the task priority they are assigned by the programmer. These do not change during

runtime and in this class of schedulers the static priority schedulers the rate monotonic

algorithm is the optimal static priority scheduling algorithm we will see that there are

various of this algorithm, but rate monotonic is a optimal algorithm. It can run tasks;

tasks set which are cannot be run by the other algorithms we will see the detail results as

we proceed.

(Refer Slide Time: 05:38)

The other category of event driven scheduler are the dynamic scheduler or the dynamic

priority scheduler here the priority is not held constant, but depending on the situation

the priority of a task may be changed by the scheduler one reason why the priority of

task may be changed by the scheduler is because of the urgency of the task completion.

So, one task may be waiting for long time and it is about to miss its deadline then the

scheduler will increase its deadline sorry increase its priority. So, that it will be able to

meet its deadline. So, these are the dynamic scheduler where the scheduler keeps on

changing the priority of the tasks and of all the dynamic priority schedulers the EDF or

the earliest deadline first scheduler is the optimal uniprocessor scheduling algorithm.

So, what it means is that given a tasks set if the EDF using EDF a schedule cannot be

worked out the EDF cannot schedule it then no other uniprocessor scheduling algorithm

can run it whether it is dynamic priority or static priority it is the optimal uniprocessor

scheduling algorithm including both static priority and dynamic priority scheduling

algorithm EDF is the optimal uniprocessor scheduling algorithm, if a task set cannot be

run using EDF, it cannot be run using any other schedulers. Now let us look at further

into the results.

(Refer Slide Time: 07:50)

To start with a our discussion, we will consider the simplest scenario, the simplest

scenario is that we have a uniprocessor and the tasks set is independent, we say the task

set is independent is that the tasks do not share resources that is result set by one task is

not used by the other tasks and also there is no precedence ordering among tasks like one

task always need to run after that the other task and run, etcetera, those situations do not

exists.

So, this is the simplest situation uniprocessor with independent tasks, but of course, may

not be very practical because many applications you might have multiprocessor being

used or we might have tasks which share results with each other or there may be

precedence ordering, but for our understanding, let us start with a simplest one and as we

proceed, we will relax these constraints that tasks share resources and what needs to be

done to the scheduler precedence ordering what needs to be done to the schedulers and

multi processor what kind of changes are needed.

So, as we proceed we will look at those situations, but we start with very simple.

(Refer Slide Time: 09:26)

First let us look at the EDF. So, if EDF cannot run a set of tasks it not necessary to look

for another scheduler which can run this tasks because there will exists no scheduler

which can run it, EDF is a important scheduler it is optimal first of all any complex tasks

set with challenging deadlines, EDF can find a feasible schedule for that not only that it

can schedule both periodic and aperiodic tasks at any scheduling point the scheduler

dispatches the shortest deadline ready task.

(Refer Slide Time: 10:14)

So, this is the basic of the EDF whenever the scheduler starts running it looks at all the

tasks that are waiting finds out the deadline of the tasks and find out finds out which are

the shortest deadline and then it starts running that. So, this is the crux of the algorithm

and the name of the algorithm comes from here earliest deadline first. So, every

scheduling point it looks at the tasks which has the earliest deadline and it takes up first

to schedule.

This I hope this point is clear why it is called as earliest deadline first scheduler because

every scheduling point the scheduler starts running and then it checks all the tasks that

are ready finds out the task that has the earliest deadline and then starts to run it and

when it runs, it may preempt any other task that may be running you may ask that that at

a scheduling point will there be a task running or let me ask you this question that when

there is a scheduling point, is it possible that some task is running at a scheduling point.

The answer is yes there are two types of scheduling points one is on task completion of

course, on task completion at that task scheduling know the task will be running, but the

other type of scheduling point arises due to task arrival and when a periodic task instance

arrives it is very likely that some other task might be running at that point and then the

scheduler will check the relative deadline of the 2 tasks and then if the one that has

arrived has a shorter deadline then it will preempt the running task.

(Refer Slide Time: 12:57)

An important issue that we need to check understand well and also be able to check is the

schedulability; the schedulability of a task set means that whether EDF can run it, the

schedulability expression for EDF is very simple. It is sigma e i by p I, if there are n

tasks 1 to n, then sigma i equal to 1 to n e i by p i e i by p i as we had earlier also

mentioned, it is basically the utilization of that task it takes e i execution in over a p i

duration and therefore, the utilization due to the task e i sorry, t i is e i by p i we represent

that using e y.

E y is the utilization due to the task t i when given by e i by p i and for all tasks, you can

sum the utilization due to various tasks as long as the utilization is less than equal to 1,

we say that the tasks set is schedulable or it can satisfactorily run on a earliest deadline

first scheduler this expression is both the necessary and sufficient condition for

schedulability for the EDF schedulers.

(Refer Slide Time: 14:43)

Let us look at an example, we have 2 tasks their execution time period and deadline are

given as one unit the period is 3 and the deadline is 3 for task 2 the execution time is 8

the period and deadline are 12. So, will task set be feasibly run using a EDF scheduler

the answer is obtained by using the expression sigma e y is less than equal to 1 the

utilization due to task one is one by 3. So, every 3 units it needs one unit of execution the

utilization due to task 2 is 8 by 12 which is point six seven and sigma e y is equal to 1

which is less than equal to 1 and therefore, this task set is feasibly schedulable using the

EDF scheduler let us see how will the task set run or how will the EDF scheduler run.

Tis task set let us assume that both the tasks T 1, T 2 the task instance start arriving at

time zero. So, time zero both tasks arrive and the scheduler will wake up because that is

a scheduling point now which task will it take for scheduling it will take the task with a

earliest deadline. So, between T 1 and T 2 which has the earliest deadline the one has

deadline 3 and the other has deadline 12. So, it will take the task T 1 the first instance of

task T 1 which has the earliest deadline it will take the up for execution.

It completes after one unit because execution time of T 1 is one and at that point defines

a scheduling point and the scheduler will wake up and find that there only one ready task

which is T 2 1 it will start executing T 2 1 the T 2 1 executes for 2 time units and at time

2 sorry time instance 3 the second instance of t ones arrives and then checks the deadline

and finds that T 1 has lower deadline then T 2 and therefore, preempts T 2 and T 1 starts

running the second instance of T 1 it completes after one time instance and then it

resumes the T 2 1 the T 2 1 runs for 2 units because the total requirement for T 2 1 is 8

units at the time instance 6. The third instance of T 1 arrives and because it has a shorter

deadline then the T 2 it again preempts T 2 T 1 starts running and then T 2 starts running.

So, this is the basic idea behind the EDF scheduler at every scheduling point it starts to

run and then decides the task which has the shorter deadline and takes it up for

execution.

(Refer Slide Time: 19:23)

So, let us do one example we have a task set 3 tasks T 1 has execution time of one period

one deadline sorry period four deadline 4 task 2 execution time one period 5, deadline 5,

task 3, execution time 5, period 20 and deadline 20. This is normally the task set in a real

time application and their period and deadline are same worst majority of the task are

periodic and their period and deadline are the same and the execution time fraction of the

period.

Now, we want to check whether this is EDF schedulable. So, you need to use the

expression that we have sigma e y is less than equal to 1 the utilization due to T 1 is 1 by

4 utilization due to T 2 is 1 by 5 and utilization due to T 3 is 5 by 20 which is 1 by 4. So,

you can sum that up.

(Refer Slide Time: 20:50)

And check whether this is schedulable or not now let us try to answer a very fundamental

question that we have said that there are 2 classes of algorithm event driven schedulers

one is the static schedulers the other is dynamic priority schedulers and we said that EDF

is a dynamic priority scheduler, but then if EDF is dynamic priority scheduler, then we

should have a concept of a priority and we should be able to determine what is a priority

of a task, we should be able to check whether the priority of a task that is running is

greater than the arriving task or the arriving task has a higher priority, but so far if you

look at the discussion that we have never mentioned anything with priority we just said

that the scheduler examines the task having the earliest deadline and then schedules it.

So, what is the notion of priority here and why do we call it as a dynamic priority

scheduling algorithm. So, not only you should be able to calculate the priority of a task,

but also you should change the we should show that it changes with time then only we

can call it as a dynamic priority algorithm, but we have never said anything about some

priority how does priority change with time. So, how do we really call it as dynamic

priority scheduling algorithm.

(Refer Slide Time: 22:39)

Let us see the answer the answer is that as the task waits because there are other high

priority algorithms or having shorter deadlines their taken out, but as the task waits it

chances up being taken up increases.

So, you can imagine a virtual priority value associated with a task it keeps increasing

with time until the task is taken up for scheduling.

(Refer Slide Time: 23:19)

EDF; we saw that it is a optimal algorithm there can be no other algorithm which can

schedule a set of tasks if EDF cannot; it is a very simple algorithm at every scheduling

point just check which has a shortest deadline and take that out for execution, but it is not

popular its rarely used in applications. In fact, as we say look at the commercial

operating system none of the operating system directly supports EDF you cannot select

EDF scheduler if at all we have to our self-implement.

EDF scheduler using the support available by the operating system, but why if it is a

such a good algorithm, its efficient simple why is it that none of the applications and

very few applications use it, it must be something to do with the disadvantages of this

EDF, it must have some very severe disadvantages that is why it is not used, the answer

to this that why it is not used will become clear if we look at the disadvantages of the

EDF scheduler.

(Refer Slide Time: 24:49)

The main disadvantages of the scheduler the first disadvantage goes by the name poor

transient overload handling. So, what it means is that if due to some reasons a task takes

more time to execute may be it took a longer path in a code maybe it was waiting for

some condition which did not occur may be it went into an infinite loop in those cases of

transient overload it is not known which task will miss the deadline even the most

important task can miss a deadline because a very low priority task it just got delayed.

Implementation of the EDF is a problem because you see here all the tasks have to be

kept if there are n tasks the n tasks are to be maintained and thus scheduler needs to

compute the completion time for all the tasks to fight the earliest deadline. So, a runtime

inefficiency of the algorithm we will see some efficient implementations of the EDF

scheduler, but still those are not good enough the other schedulers are much more

efficient.

So, the first point is poor transient overloading second is runtime inefficiency, but the

third one is possibly the most glaring short coming this may be the reason that why non

trivial applications do not use EDF it goes by the name; poor support for resource

sharing among tasks in a realistic application the tasks do share resources the result

produced by one task used by other tasks we will see that the other type of schedulers for

example, the rate monotonic can be extended to handle sharing resources, but EDF will

see that resource sharing if we permit in EDF it really creates lot of problems that it

cannot be used.

So, the third one is possibly the most important reason why EDF is not popular, but then

the other 2 reasons also are bad runtime inefficiency, it is a bad; we can have more

efficient schedulers transient overload handling even if there is a minor overload in the

situation in the system then the system will break down.

(Refer Slide Time: 27:58)

Let us understand how why transient overload occur in a system a transient overload

occurs when a task takes more time than it is estimated or maybe too many tasks arise at

time instant. So, when an executing task takes more time in EDF it becomes difficult to

predict which task could miss its deadline? So, as I was saying that even the most

important task most critical task that may miss its deadline just because a very simple

task like a logging task event logging task or a result logging task that got delayed maybe

it could not write properly in the disk it was taking more time, but if we do not log events

nothing happens or if we do not log nothing very severe happens log results we could

have actually not want that situation that due to a event logger or a result logger the

critical task missed its deadline.

(Refer Slide Time: 29:30)

But here in this scheduler that can happen that just because the logger task is taking more

time the critical task missed its deadline runtime inefficiency we said that the scheduler

each time needs to look at the jobs waiting to be executed a simple implementation may

be a queue and then computes the deadline for each task how much time is remaining

and one implementation may be based on the priority queue we will see the

implementation based on the priority queue, but in this case also we will see that it is not

really very efficient for this lecture we are running short of time we will just complete

here saying that even in a priority queue when we want to insert a task into the priority

queue we need log n time if n is the number of waiting task.

We said that the event driven schedulers are used in non trivial applications where we

might have dozens of tasks and log n is not a very efficient situation of course, selecting

the highest priority we can do in one time even using a priority queue our result is not

very encouraging and if you just use a simple linked list or a simple queue to maintain

the task that are running that are ready then it will be o n which is still worse than this

and even if we use a priority queue it is not really very encouraging.

So, let us see whether we can have a better implementation then a priority queue, but that

we will look at in the next lecture.

Thank you very much.

