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In the last lecture, we discussed about the importance of what we call as the shape factor, 

which is actually a geometric property of any given section. For any given section, the 

shape factor is available in the standard table. So, if we know the shape factor, we can 

easily find, what would be the additional load carrying capacity of any system. When 

you are talking about the plastic moment of resistance of the section, because you can 

multiply the elastic moment of resistance, which is nothing but sigma y into z y or z e or 

simply z, which is a section model, which we have already know for a given section. 

Whereas, M p is again given by sigma y of z p, where, z p we already know, is given by 

conventionally, area by 2 of y bar 1 plus y bar 2, where, y bar 1 and y bar 2 are the 

centroids of the respective tensile and compressive area with respect to the equal area 

axis, where, A is the total area of cross section, which is getting plasticized. 

We have worked out couple of examples to estimate the shape factor. So, I think it is a 

home work for you to find out, what all the shape factors for different sections. Like for 

example, a box section, which is square in shape, what would be the shape factor for 



this? Then an I section; then of course, a channel section, etcetera. You should find out 

the shape factors for these. Of course, this x is not very necessary, because for different 

standard conventional geometric forms of steel sections, which are likely to be used in 

marine structures, we already have the equations available in the literature for finding out 

the shape factor. I will give you these equations later. It is available in ABS – American 

Bureau of Shipping code. It is available in the ABS core for different shapes. So, it is not 

necessary that you have to memorize this, but you must know how to estimate that. 

Now, we spoke about a very important transformation from an elastic analysis to a 

plastic analysis, where the designers felt that, the reserve strength of the material can be 

utilized provided the structure should remain statically indeterminate, where (( )) high 

order. Whereas, redistribution can effectively take place and the material should have 

enough ductility. The moment we say ductility, there are two aspects of ductility here: 

one is the displacement ductility, whether the deformation can sustain, other is what we 

call curvature ductility, because in certain cases… For example, let us say I have a beam 

column junction. This is a typical beam column junction. It may be a stiffened seated 

connection. It may be an ISMB, it can also be an ISMB. It can be a stiffened seated 

connection. It can be a moment restrained connection between the beam and the column 

if it is a steel structure. If it is concrete, of course, this is also reinforced, this is also 

reinforced. 

Now, the structure becomes (( )) indeterminate. For example, let us say I have system 

like this, whereas, all the vertical lines indicate columns and all the horizontal lines 

indicate beams. A typical junction, which is a beam column intersection, looks like this. 

If this structural system is subjected to lateral loading and gravity loading, the system 

becoming very highly indeterminate, if you want to enable plastic analysis to find out the 

M p value for this system. There are two things, which are inherently required. One is the 

system should be statically indeterminate to a very high degree, it is true in this case. The 

second requirement is though the material is steel, we must check whether at the 

junction, there is enough curvature ductility, otherwise, if the curvature ductility is not 

sufficient, then effective redistribution of moments from the section to the next critical 

section will not happen, because when the structure is subjected to a collapse 

mechanism, the joints where the plastic hinges will be found, should be sufficiently 

rotating to transfer the moments from the section to adjacent section. So, it requires 



enough curvature ductility. So, one must check, what is a relationship to derive the 

curvature ductility or essentially moment curvature relationship, what we call M-phi 

relationship. 
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We must check this, which we will do today. We already know from classical 

mechanics, for simple bending problem, the following equation holds good. M by I, 

stress by y, E by R, where, we all know the conventional terms of this M is the moment 

at this section, I is the moment of inertia of the cross section about the bending axis, 

stress – sigma is the stress value – bending stress, and, y is the distance of the extreme 

fiber from the neutral axis, e is the Young’s modulus of the section or modulus of 

elasticity of the material and r is the radius of curvature of the bending profile of the 

beam. It is a classical equation, which is valid when the bending remains elastic.  

So, let us pick up this equation and say 1 by R is M by E I, which I call as phi. 1 by R is 

called curvature. So, from this equation, it appears that, phi and M are directly 

proportional, that is, if M increases, phi also increases. This is true only till elastic limit 

is reached. Let us have a triangular cross section just for illustrating an example. Has a 

breath of b, has a depth of h. This is my equal area axis as well as neutral axis for this 

cube. And, the distance of extreme (( )) is h by 2 from here, which I call as y. 
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Let us say E by R is stress by y. So, the distance of the extreme fibre in the present case 

is h by 2. So, E by R is stress by h by 2, where, stress remains the yeild value, because 

extreme fibre is yeilding only the extreme fibres is yielding, only the extreme fibre is 

yielding. We have given a special name from an elasto-plastic section. We call this as 

depth of elastic core. Let e denotes depth of elastic core in an elasto-plastic section, 

where, I am talking about partially plastisized section. The section is partially plastisized. 

And, when this will happen? This will happen when M increases further after stress 

reaches the first yield. After the stress value reaches the first yield, plastization will start. 
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So, the stress-strain diagram will start getting modified like this as we saw. And, this 

becomes mine, what I call depth of elastic core. This is what we have seen yesterday. So, 

at that condition, 1 by R value can now become 2 sigma y by E e. I call this equation 

number 1. I am replacing h with depth of elastic core, because I am looking at the elasto-

plastic section now. Why I am looking at this? Because I am studying the moment 

curvature ductility effect when the section is getting plastisized. In elastic, there is no 

problem, curvature is there. In plastic, we must check this. 
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We can now say, 1 by R, which is phi, which is M by EI. I can use a suffix here, I say 1 

by R at yield will be at yield. I can replace this phi as phi y. Therefore, phi y can be 

simply M by E I. It means phi and M are proportional. Similarly, I can say phi p is also 

equal to M p by E I. And, M p by M y is phi p by phi y. And, we already know, this M p 

by M y is nothing but shape factor, where, S – this is shape factor. Let us expand the left-

hand side of this equation. We know this is going to be equal to sigma y of z p by sigma 

y of z y, which is phi p by phi y, which is S. Also, we already saw, moment at any 

section can be traced with the depth of the elastic core in a given elasto-platic section by 

a classical expression, which we saw yesterday. This expression we have already derived 

yesterday. 
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Let us say M by M p – 1 minus e square by 3 h square. I call this equation number 2. 

Look back equation number 1. 1 by R – 2 sigma y by E e. This is equation number 1. 

Already, we have this. So, from this, e will be actualy equal to R 2 sigma y by E. 

Substitute this in equation 2, because e is here, e is here. So, M by M p – 1 minus 2 R 

sigma y by E the whole square 1 by 3 h square. We can simplify this further – 1 minus 1 

by 3 of 2 sigma y by E of 1 by h by R square. 
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We already know… We know that, 1 by R from here – 2 sigma y by E h. So, 2 sigma y 

by E can be replaced as h by R. So, rewriting – M by M p – 1 minus 1 by 3 of h by R 

square 1 by h by R square. Now, there is a difference between this value of h by R and 

this value of h by R. What is the difference? What is the difference between this value of 

h by R and this? This is at yield. So, I can say here yield. Is it yield? The distance of 

extreme (( )) of h by 2 and I got sigma y here. So, it is yield, first yield point. So, this 

value is occuring – first yield. Therefore, I can say this is h by R yield. Substitute it here. 

I can rewrite this equation as M by M p is equal to 1 minus 1 by 3 h by R y by h by R the 

whole square – equation number 4. This was 3, this was 4. Now, equations 2 and 4 are 

very important for us. Equation 2 gives you the relationship between the moments – the 

plastic moment and the moment at any section with respect to the elastic core. Equation 

4 gives me the relationship of the moments, that is, the moment at any section with the 

plastic moment capacity with respect to the curvature ductility. This can be plotted. 
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Now, just to understand, physically, what does it mean for the designer is that… Let us 

take the equation 2 in design perspective. In design perspective, let us take equation 2, 

that is, M by M p is 1 minus e square by 3 h square. Now, what you know in this 

equation are the following. Moment at any cross section is known to me, be it 

determinate, be it indeterminate. If the structure is indeterminate, there are methods to 

find out moment at any section using classical structural mechanics principles. For 

example, moment distribution method. 



 For example, stiffness method. There are many methods available. One can easily find 

out moment at any section you want for a given loading. M p is known to me, M p is not 

a problem, because M p is nothing but z p into sigma y and z p is nothing but section 

modulus into shape factor into sigma y. And, for a given section, I know the section 

modulus and I know the shape factor. So, M p is also known to me. It means the left-

hand side variation is known to me for a given selected section. So, for the choosen 

section, M by M p is known to me for the choosen section. Design is nothing but finding 

the section. You choose a section, know this relationship, and, from this relationship, try 

to find out e. If e matches h – depth of the section, it means section is fully plastisized. 

So, the design what you have done is optimal. So, one can optimize a section for least 

elastic core. Elastic core should be minimized. Plastic should be the maximum. So, that 

is the design perspective of this. 
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Having said this, a very interesting question asked, whether the plastic design or ultimate 

load design is safe? It means, whether does it have enough margin of safety? I asked this 

question in the beginning. Why this question is a concern? This question is a concern, 

because in ultimate load design or in ULS – ultimate limit state design principles, we are 

utilizing the reserved strength of the material till the ultimate strength of the material. So, 

any increase in the load will have a tendency to cause failure to the structure, because the 

material will fail beyond the point. In working such design or a classical working such 

design principles, this problem does not occur, because you do not stretch the strength of 



the value of the material beyond the elastic limit, whereas here I am trying to stretch the 

load carrying capacity beyond the elastic limit till the ultimate limit. So, there is a 

question asked, does it have enough margin of safety. 

Now, as I said, let us introduce a factor Q, which is called as a load factor; which is 

nothing but the ratio of collapse load to working load. So, in the plastic design, the yield 

strength is assumed to remain constant, the allowable stresses are taken only as a fraction 

of the yield strength. But more interestingly, this fraction is close to 1.0 – 0.95, 0.97, 

0.90; it is very close. But it is never 1, it is close to 1. Of course, it does not exceed 1. So, 

we know now that, Q is W c by W w. And, we also agree that, moment carrying capacity 

is always proportional to W, that is the load. Therefore, M w can be some constant of W 

w, M p can be some constant of W p – some constant. So, M p by M w, which is W p by 

W w, which is nothing but Q. Why I am saying W p as same W c, because beyond that 

value, the structure will collapse, p stands for plastic design. So, it is… I can always say 

this is same as collapse (( )). 
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Once we agree this… Let us expand left-hand side of this equation. Let us say M p by M 

w. M w stands for moment based on working loads, which is z p into sigma y and z e 

into sigma y allowable, it is not sigma y, it is sigma allowable. And, sigma allowable is 

always a fraction of sigma y. We already said that here. This fraction is close to 1, but it 

is a fraction. Now, let us say M p by M w is z p by z e and sigma y by sigma allowable. 



And, I can rewrite this as shape factor in sigma y by sigma allowable. And, we already 

know that the relationship of M p by M w is load factor. We have already said that in 

equation 1. So, load factor is a product of shape factor multiplied by… I put this as factor 

of safety. Why I called this factor of safety? Because any fraction, which is applied on 

the yield strengh to arrive at the allowable stress is always factor of safety. Now, let us 

take a quick example and see what is happening actually in the plastic design. 
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Let us say, I am analysing a section for axial tensile stregnth. I am having a bar, I am 

trying to pull the bar, I am analysing the section for axial tensile strength. In axial 

tension, the permissible or I can say allowable – allowable stress is 0.6 sigma y. Let I am 

saying let, because it depends upon the code, depends upon the method of design, let us 

say 0.6 sigma or sigma y. Therefore, sigma y by sigma allowable will be sigma y by 0.6 

sigma y, which will be 1.66. This is what we say as factor of safety in working stress 

design or elastic design. Why elastic design? Because here the stress levels are limited 

till the proportional limit of the material.  

So, working stress design principle has an explicit factor of safety, which is seen in the 

calculation, which is nothing but the ratio of the yield value to the allowable stress value 

for a specific application. This changes. If it is talking about bending strength, it will be 

0.66 f y, talks about shears – about 0.4 f y. Keeps on changing. This fraction keeps on 

changing. But I have picked up an example of axial tension, which is 0.6 f y or sigma y. 



So, people are happy in working this design method, because explicitly, the factor of 

safety is seen in the design calculation. I am trying to show, what is the effect of this on 

plastic design. 

Now, let us apply this plastic design. Let us take a rectangular section for which the 

shape factor is 1.5. We have derived yesterday. So, you will see that, the load factor, 

which is 1.5 times of 1.66, which is about 1.85 I think. You please check this. How much 

is that? 2.49. And, Q is nothing but… What is the value of Q? This M p by M w. So, Q 

admits for margin of safety, which accounts for a value phenomenonly higher than the 

conventional factor of safety  working in this design. So, plastic design procedure has 

good margin of safety, which is reflected through the load factor Q. So, the question, 

which was bothering us as a designer, whether plastic design principle has enough factor 

of safety compares into working this design is eliminated, because it is having enough 

factor of safety as margin of safety, which is seen in the load factor; which is nothing but 

the ratio of plastic moment to working moment or elastic moment, where, elastic 

moment is the moment what we get using elastic design, plastic moment is the moment 

carrying capacity, what you arrive using the plastic design. The difference between these 

two is Q, and, that Q accounts for margin of safety multiplying shape factor. 
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Now, let us quickly see, what is the effect of shape factor in terms of this ratio. Let us try 

to look at a plot. I am plotting this as M by M y and epsilon by epsilon y – 1, 2, 3, 4, 5, 6. 



And of course, this is 1. M and M y are equal and then this is 2 and so on. So, the grid 

starts from here is linear till here about this point, then keeps on changing. For different 

shape factors, this is solid circular – 1.7, rectangular – 1.5, cubes – 1.27, and, box 

sections – 1.125, and of course, I sections – it varies from 1.1 to 1.18. They are 

horizontal lines. There is not dipping. These are horizontal. So, you can see from here, 

there is no section, which is choosen for marine structure design, whose shape factor is 

less than 1. So, always, the load factor will be higher than the conventional factor of 

safety what people have in mind for working stress design. So, plastic design is a safe 

procedure. There is no doubt. You can select any section like this. 

Conventionally, I will just finish in few minutes. Then we will take up the next lecture. 

Conventionaly, if you really wanted to find the shape factor, which is nothing but z p by 

z e. z e is not a problem, you can easily define for a given section. But z p is a problem, 

because z p conventionally is A by 2 of y bar 1 plus y bar 2. So, ultimately if you want to 

really find z p, do not try to look for this equation, it is nothing but the first moment of 

the area about equal area axis. So, for a given section, locate the equal area axis, locate 

upper and lower parts, locate the CG’s of that – y bar 1, y bar 2. Take the moment of the 

upper part and the lower part seperately, independently with respect to the equal area 

axis. Mechanically, this is how you will find the z p. Once you know z p, for a given 

section, you know z, you can find shape factor. Try to understand this very clearly. 

Otherwise, shape factor is directly available in equation forms in standard literature and 

in codal provisions for different sections, which are conventionally used for marine 

structures. We need not have to derive them at all. But we should know how they are 

obtained. 

In this lecture, we discussed about two aspects important. One is what we call curvature 

ductility, how to arrive at curvature ductility. And, we have seen the relationship 

between M p and M in terms of ductility, in terms of elastic core depth. Then we went 

down to explain that, how the margin of safety is inherently available in the plastic 

design procedure, because S – shape factor is nowhere less than 1 for any section. It 

means that, the margin of safety is always higher than the conventional so-called factor 

of safety, what people follow in working stress design. So, in the next lecture, we will 

talk about how we will arrive the collapse loads for different systems using two 



interesting theroms, what we call static therom and kinematic therom, respectively. We 

will see in the next lecture. 


