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So we will discuss now one another important topic which is, sheer centre. In the last 

lecture we discussed about, or last few lectures discussed about plastic analysis and 

design. And we also discussed about theories of failure as discussed by, as given by 5 

different theories. For understanding let usgo quickly to numerical examples, these are 

examples of different theories. Then we will move on to the sheer centrewhich is an 

important topic as far as thin asymmetric sections are concerned. We will tell you why it 

is important and that is how that is predominantly important as a designer for marine 

structures, let us see that. But before that let us do onedesign example using different 

theories. Let us say the maximum principle stressof a memberis given as 200 newton per 

mm square tensile and the minor is maximum, and the minor sigmais notknown, butthe 

nature is compulsory. If sigma y p of the materialis300 newton per mm square same in 

tensile and compulsion, find the minor principlestressusing different theoriesof failure. 

Now takemue for the material as 0.25, so following theory should be used; Maximum 

strain theory, Maximum sheer stress theory, Total strain energy theory and Maximum 

distortion. 



Read the problem think it for few minutes. Let us see how we will solve this problem. 

You have the governing equation of all these theories I gave you in the previous lectures 

please turn them back and be ready with the equations, and read the problem what is 

given and what is asked how we handle this problem. 
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So let us say for maximum strain theoryin a biaxial stress state, see I have deliberately 

made these 2 stresses of different nature. Because 1 is tensile other is compulsion, so I 

am looking for quadrants of 2 and 4; so it can give me a good difference. I deliberately 

made this as a choice for a problem. So let us see how they are vary, so for the maximum 

strain theory for the given biaxial stress strain what is the controlling equation? Can you 

give me the equation? Is this the equation? Sigma 1 minus mue sigma 2 sigma y pand 

already we know sigma 2 is the compression that is the indication given in the problem. 

So,I should saysigma 1plus mue sigma 2, now is sigma y p because this is minus of 

minus and you know sigma 1, you know sigma y p, you know mue, can you find sigma 

2? 

 

So, this is 200plus 0.25 of sigma 2, is 3,right? Which gives me, sigma 2 plus 400 that 

is1.Answer is compression.Maximum sheer stresstheory, According to this theory what 

is the control equation? Minus sigma 2 issigma y p, is it not? So for my problem sigma 2 

being compressive, which gives me sigma 2 as simply 100 compressions, is it not? Take 

away this.  
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Now total strain energy theory, what is the control equation? Sigma 1 square minus 2 

mue sigma 1 square sigma y square p, am I right? You know everything solve the 

quadratic and get me sigma. So, for sigma 2 being compressive sigma 1 squaresigma 2 

square 2 mue sigma 1 sigma 2 is sigma y p square. Now what is sigma 1 value? 200then 

you find sigma 2;solve the quadratic and get this is 179.13.  

 

Look at the fourth 1, maximum distortion theory. According to this theory the control 

equation is sigma 1 square plus sigma 2 square.Ya minus sigma 1 sigma 2 goodis y p 

square, is it not? So, sigma 1 square plussigma 2 squareplus sigma 1 sigma 2 square is 

sigma y p square. So,200 square plussigma 2 square, so hereplus 200 of sigma 2 is,300 

square which gives me sigma 2 as 144.95newton per meter square compression; and if 

we see the discrepanciessince sigma 2 is compressive all these values are in which 

quadrant of your stress theory? Sigma 2 is compressive. 

 

Sigma 2 is compressive, sigma 1 is tensile, which quadrant? This is strainsigma 1 sigma 

2 sigma 2 is negative, so I am in the fourth quadrant. So, as I expected the 

variationbetween the valuesare significantlyhigh. So, designer it’s very large. Second 

example, this is more alarming I will show you an example now. 
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Compare the permissible diameterof a shaft. I have a shaft,I want to check the diameter 

of the shaft, subjected to torsion.Taking mue as point you use the following theories;1. 

Maximum principle stress theory, 2. Maximum strain theory, 3.Maximum sheer stress 

theory, 4. Maximum strain energy theory. So, I have a shaft whose diameter is d. The 

shaft is subjected to torsion attesting moment M tattesting moment, M t. Let say this 

diameter of my shaft. I want to estimate the diameter of the shaft, the design problem 

based on the following things; so all should give me the same value, more or less similar 

values. 

 

Let us see what happens when we use the different theories. Let us say for exampletake 

up the maximum principal stress theory.Before that let us saysigma y p in tension is 

same as sigma y p in compulsion. So the maximum principle stress theory sayssigma 1 is 

equal to sigma y p, is it not? That enact irrespective of other status stresses. 

 

When the maximum principal stresses reaches yield point failure has started, that is what 

the theory says. According to maximum strain theorywhat is the equation? Maximum 

strain theory, is this the equation? Maximum strain theory, then maximum sheer stress 

theory ?There is stress caused inthis equation? Is it right or wrong? Then according to the 

maximum strain energy theory, ok? 
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Now for a pure shear case as in this problem sigma 1 equal sigma 2 will be equal to tow, 

the shear stress, pure sheer case hence the equations 1 can be rewritten as tow y p is 

sigma y p this for the maximum principal stress theory, tow y pis sigma y p by 1 minus 

mue that is for the maximum strain theory. Now, in this case they are of different nature 

so it will become 1 plus.Therefore different nature it will become 1 plus. 

 

So for maximum sheer stress theorytow y p will be sigmay p by 2, and for this case tow 

y p will be sigma y pby root of 2 of 1 plus mue, is thatok? Again different nature, when 

different nature so plus 1; root because I am talking about squares. Now I have the value 

of mue, I have the value of mue can you just tell me what are these values, equivalently I 

am substituting for mue because mue already have has 0.3, can you tell me these value?  

So this is going to be simply sigma y p no change in this that is tow y p, and in this case 

tow y p will be equal to0.769, and in this case tow y p is equal 0.5, and in this case tow y 

p is equal to how much? Point, remove this. 
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In the case of design of circular shaft, the permissible stresswhich I saytow2 is given by 

tow y p by some factor, is it not? For torsional momentsis also equal toshear stress by 

torsion, for torsional moments is also equal to 16 M torsion by pie d 1 2. 

 

How do you get this? How do you get this? What is the control equation by 

bending?What is the control equation for torsion? What is the control equation for 

bending? M by a stress by y is e by r control equation for torsion? t by j is stress by y 

max is it not? So, t is empty, j is polar moment of inertia. For the circular shaftwhat is 

polar moment of inertia, polar moment of inertia for a circular shaft, what is moment of 

inertia for a circular shaft?Pie d by 4 by 64, what is polar moment of inertia? 32 half of 

that, I am talking about y also which is d by 2. I get 16, is that clear. So,now let us find 

out this equation, I call this as equation number, let me call this equation number let me 

call this equation number; you missed out some number in between this is 3 that can be 2 

or whatever may be. Now I have tow y pby factor of safety16 M t by pie d 1 2 or simply 

d cube pie d cube. Now this tow y p is different for different theories, for principle stress 

it is sigma y p directly, for maximum strain it is 0.769, for the other theory 0.5 and the 

fourth one 0.62. I will keep on substituting and find keep on different diameter and 

compare; can you give me what is the diameter for the first theory? 

 

So, let us write down the equation first 16 M t for maximum principle stress theory, 16 

M t by pie, I call it as d 1 for me to understanding; d 1 cube is sigma y pby factorbecause 



equation 4 a, is itok? For maximum strain theory16 M tby pie d 2 cube is 0.76 M, I am 

talking 0.76 sigma y p by factor, 4 b. 
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Forlet us compare these 2 then you compare 4 a and4 b get me the relationship between d 

1 and d 2 by comparing4 a and 4 b. See, say if I bring this multiply these2 equations can 

be equated, is not? So, you have got a ratio of d 1 by d 2, is it not?  

 

Give me the ratio. So, d 1 by 2 will become0.91 that it is d 1 is to d 2, 1 is to 1.909 is it 

right? 1.909. The diameter suggested by the maximum strain theory for this problem is 

about 1 point about 10 percent more than the diameter suggested by the maximum 

principle that is why what we are meaning. The diameter recommended by the maximum 

strain theory is about 10 percent more, about 10 percent more than the diameter 

suggested by the maximum principlestress theory.  
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Now let us do for the third case, for the third theory maximum shear stress theory.Now 

let us say 16 M t by pie d 3 cube and this was 0.5, I call this 4 c. Now compare4a and4 c 

and comparing this now can you give me the ratio betweend 1 by d 3. So this says d 1 is 

to d 3is 1 is to the proportion is 1.26, is very high. It is about 26 percent higher when you 

use this theory for design. I will rub this I will rewrite here. 
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Forstrain energy theoryplease do not mind me shortened here, you can write it for total 

strain energy theory16 M t by pie d 1 cube or d 4 cube is 0.62 is it? I call this as 4 d. 



Now, comparing equation 4 d with 4 a we get d1is to d 4 and 1 is to 17 percent. I should 

say d 1, d 2,d 3, d 4are in the relationship of 1 is to 1.09, 1.26, and 11.17. So, that is 

amazing, simple theory simple problem give different dimensions for the design. This is 

where the design is getting deviated by different design engineers by following the same 

analysis and design, for example plastic design. So, if we chose any wrongtheory 

applicable to your problem you will land up in a wrong diameter, simple example. 

 

Ok, so you have to be very careful in understanding the failure behavior based on the 

theories. Let us talk about shear centre, any questions here? Are you understanding the 

importance of this problem, we have demonstrated how the diameter selection can be 

chosen can be varying by using different theories on a simple problem like this. So, even 

there exist uncertainties on the theory suggested by the literature. Therefore, our original 

argument of limit state design or ultimate living states being probabilistic non 

deterministic is all justified; because we cannot land up in a single unique answer even 

the theory suggest different solutions as we see for this example. So, it is not that 

simple.Your design is always a close form answer in unique number, no. Let us move on 

to the next topic which we are interested now to discuss which is very closely relevant to 

marine structures is shear centre. 
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I can give a very interesting reference for the plastic analysis of structures, please read 

this book if you have time; Michael R Horne1971 “Plastic analysis of structures”all the 



relevance of this theory is all discussed by this author, William Clowes and Sons limited, 

London,pp173.A good book for plastic analysis of structures. One more book is there,it 

is slightly of a higher order butstill “Save, M.A and Marsnnet” there is double n , “Plates 

and shells, North Holland publishing , I think this is design of plates shells and discussif 

you remembercorrectly.North Holland and publishing city London,these tworeference 

are very good for plastic analysis and design. You can go through them, of course these 

examples are not applicable directly to marine structures, but you can still find the 

members which are designed using in theory and discrepant ofthe different theory are 

earlier discussed hear so you can read it. 
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Now the question comes, what is shear centre,how it is relevant in main structures? Now 

the most important factor in marine structure, the membersare usuallythin and 

asymmetric, why thin? Because we are talking about y and c we do not want to increase 

the payload, we do not want to increase the weight during installation etc we say thin. 

Thin doesn’t mean that it is very very thin, the thickness of the material in comparison to 

diameter is very small. Thus d by t ratio is very small, not thin means that we are using a 

paper it will be like a paper, not like that. The thickness of the member compared to this 

diameter is very small, because we want large diameter to y and c effects that is different 

and we want to for storage for blasting there are daily applications seen in the previous 

lectures of this module.So, we understand why we are talking about large diameter 

structures. We havea specific choice of material or member which has thin cross 



sections, means thickness of the material of the member is less. We haveasymmetric 

cross sections, why, because we are working on different geometric shapes which can 

effectively disperse the wave loads, ok,so asymmetric. 

 

Now, whentheaxis of transverseloadsaxis means the line of action, I should say the line 

of action of transverse loaddoes not coincidewiththe centroid orcentroid gravity ormass 

centre of thecross sectionthen it inducesadditional movement and this movement will 

createtorsional effect in the section, that is the problem. And generallyasymmetric 

section, thin sections are good in bending but very weak in torsion. Now the difference 

between the line of action of transverse force or transverse loads to that of c g is what we 

call, actually is a shells, ok. We will see this now here in a classical definition of shear 

centre. 
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Shear centre is defined asthe intersection of longitudinal axis of a memberwiththe line of 

action of transverse loads. Let us have a section, some cross section, asymmetric.This is 

my c in section.This ismy w, then what 2 is nothing but, the self feeds geometrically 

mass will axis this point. Whereas this point is what we call as shear centre because this 

is the point where my line of action of later loads selected. The difference between these 

2 is what we call as e, it may lie in the same section, it may lie outside the section also; I 

will show you. It may lie somewhere here also, the shear centre may lie here also or may 

lie outside also.  



So, if I say this is W and this is the V ray r, because it is a reaction of all the 

forces,transverse force, then additional movement comes is nothing but V r into e. And 

of course, we know that V r will be equal to W for static equilibrium, is it not? They 

should match. Then we also said that W into, so our problem is for a given section what 

to be the value of e. So, what is the offset of the shearcentre from the centrefor a given 

section which is asymmetric? Now the question obviously comes if this is symmetric 

what will happen, if a section has both types of symmetry? 
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If the cross section has, I should put a word here fortunately bothaxisof symmetryor what 

I mean to say is the geometric shape of the cross section is symmetric at both the 

principle axis. The movement you say axis is principle axis, thenintersection of these, 

these means both, these axis of symmetry isthe shear centre. So, we have no problem at 

all.  

 

For example,let us say a square, we have 2 axis symmetry, this itself is the 

shearcentre.This is the geometric centre or the mass centre, no torsion. Rectangle can 

identify 2 angles axis so no problem, circular no problem, angular no problem. Now the 

problems are L T, channel, I with unequal planes is it not, so all of them have only 1 axis 

symmetry. For example, in this case, is there any axis symmetry? In this case, is there 

any axis of symmetry? No, axis you have own vertical axis symmetry is it not; In this 

case you have one horizontal axis symmetry.  



In this case we have both of the axis if they are equal.If it is not equal then, in this case it 

is symmetric to both the axis. So if you have sections which is has got both the axis 

symmetry,fortunately, itis in a geometric shape.We have absolutely no 

problem.Shearcentre will become coincide with that of geometric centre and the mass 

centre or centroid, so we have no difficulty of invoking an additional movement which 

will cause torsion in the cross section, there is no difficulty. So, for sections where there 

are 2 axis of symmetry we need not have to bother about the shear centre. So, we will 

talk about b case where sections have 1 axis of symmetry.The shear Centre will lie on 

that axis but, where it will lie, on this axis, is it here? Here? Where? So we have to locate 

the shearcentre but, the shear centre will lie on that axis of symmetry itself, one axis. 
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So, we will take up an example where we have got sections.I should say cross 

sectionshaving1 axis of symmetry, which is the case what we discussed. How to compute 

the shear centre for this? So, we draw an example and try to derive this.The shape may 

be symmetric but, the thicknesses are different. So let us say this is b 1and this is b 2, this 

is t 1, this is t 2 and we have somewhere the c here and this is my principle axis.I call this 

asx and u, you call thisy and b, and this is my geometric centroid rope and I call this as e 

1 and this as e 2. 

 



Let us say, the shear resistance of this flangeis V1 and of this flangeis V 2 and I am 

neglecting the wave. So,I should say that total load acting on the system will be now 

resisted only by V 1 and V 2, thisis  equation number 1.  
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We know shear stress is given by a general equation V a y bar by I b. So, let us take the 

piece 1 here and mark a strip of area above this. Let us consider this strip which is at a 

distance y, let us call this as d y. 
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And area about this is what we call as a, and area of this strip alone is what we call as d. 

So, V is nothing but, the shear force acting at the section at that time, a is the area of 

above the level of contagion, y bar the centroid of the area respectively line of 

configuration, I is the movement of inertia of whole section and b is the width of the 

section under consumption. So, if I say the centroid of this area which I know, this we 

measured from herethis I should say y bar as per the equation.  
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Let us expand this for member 1; I call this just member for 1. This is my 1, tow is V a y 

bar by I b. This total V which can be W, I should sayW a y bar by I b and in my case the 

breath of the section ((recognition) which is t 1, I can say t 1. And what is areaof this 

piece?It is b one by 2 minus y, eliminating the thickness, into t 1 that is the area is it not? 

And of course, y bar if the distance of that from here is the axis symmetry is it not? So y 

bar can be written as, we already seen this is y, I can say y plusb 1 by 2minus y half, half 

of itb 1 by 2 minus y eliminate the thickness is very small, d y is very small, half half of 

that. 

 

That is what my distance of the centroid from here. This of the shear centre, is it not? 

Substitute here and get tow. So, we know V that is w, we know a, we know y bar, I we 

written as I, t 1 is we written as t 1. So, give me an explanation for tow for member 1.So 

W by 2 I b 1 square by 4 minus y square, I call it equation number 2, in simply we can 

find out. In this case of course, I is movement of inertiaof the entire cross section 

remember that, about in my case going to be u-u axis. Ok, not that part alone whole 

section. So, I want to find V 1, I know tow, remove this because I want, I am interested 

in this V 1. 
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So, V1is going to be tow d a entire, is it not? So, W by 2 I integral tow value was b1 

square by 4minus y square is that right? And d a is this area which is t 1, and we are 

looking for the whole member so from this point we should say minus b 1 by 2 t 2 plus b 



1 by or 0 to by 1 by 2 by or work force integral will get me this quickly.You getW by I, t 

1 b1 cube by tow is simplified. I can always say this equation as W by t, sorry W by I 

into I 1, where I 1 is the movement of inertia of this equation alone about this axis which 

is t 1b 1 cube by 12 is itok? Call equation 3 I think.  
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So similarly, I can always say V 2, please do it instead of b 1 you will get b 2, do the 

same axis again it will be W by I of I 2 where I 2 is t 2 b cube by 12. Now total V, I am 

neglecting the V by this web, only flanges. 
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So, total V as we see from equation 1is V 1 plus V 2, which is W by I ofI 1 plus I 2 is 

thatok, which is also equal to W. So, what does it mean, it implies that the total 

movement of inertia is only sum of I 1 plus I 2; web is neglected. Remember that 

because web also has movement of inertia which will be this dimension, e 1 plus e 2 

minus t 1 by 2 this dimension. If I know this is x 1 x 1 t q by 12, the thickness is very 

very small; you can neglect that is why getting this relationship. 
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Then taking movement about this point c V 1 into e 1 is V 2 into e 2. So, you know the 

relationship between e 1 and e 2. 

 

(Refer Slide Time: 55:29) 

 

 

For a given section of course, this dimension is known to youtherefore, if e 1 is known 

we can find e 2; V 1 and V 2 are already known to me. How V 1 is nothing but, what is 

V 1? W by Iof I 1, I is known to me, W is given to me I can find e 1. Similarly V 2, so I 

can get the ratio of V 1 and V 2, I can express it and find e 1. So I can locate the shear 

centre in the given.  

 

This is one example where the sections are symmetric about 1 axis; it is not symmetric 

about the other one because the thicknesses are different. So in that case how will 

youlocate the shear centre? So there are 2 things we answered in this lecture, 1 few 

design examples understanding that how the selection of diameter for a given simple 

example can varywhen you apply different theory. The second is what is the shear 

centre, what is its important in geometrical design for marine structures, when the 

sections have fortunately 2 axis of symmetry then we have no problem at all, shear 

centre will be going inside the centre of the section, then there will be a problem and 

inducing movement which is torsion which is generally thin asymmetry section as we 

select to choose for marine structure are very good in bending but, they are very weak in 

torsion. So ,whenever a section is subjected to additional is torsion, we must locate the 

shear centre and check for its shear stress exceeding permissible limits. 



So,this is one of the important aspects of design in marine structural members. In the 

next example, next class, we will take a few more examples case centre and try to solve 

some more sections and then we are more want to the design check for members and as 

suggested by different course, ok!. 

 


