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Lecture - 29 

Plastic capacity of sections  

under combined loads – II 

 

So,in this lecture,we willdiscuss about the plastic capacity of section estimates based on 

the combined loading. In the last lecture we understood that what would be the necessity 

of understanding the compact limit, in a given section howto estimate the compact limit 

or howto establish whether the section is compacted or not.And we have understood that 

the section is established compact limit, then we need not have to consider the buckling 

effect in the analysis,onecan straight away find the failure by yielding.Otherwise, the 

failure loads at buckling is much lower thanthat of yielding.Therefore all yourfailure 

phenomena whichis applied for plastic analysis will not hold good the section is slender 

or the section buckles. 

Sobuckling effect can be ignored, provided the section is compact and you can choose a 

section such that the compact limit is established.It means b by t ratio, d by t ratio, b 1 by 

t f, b 1 by t w can all be chosen in such a manner or fabricated in such a manner that the 

section remains stiff or compact, sothat the buckling effect is not preluding the yielding 

effect in the material.Now before we move on to estimating the plastic capacity under the 

combined action of bending and shear, bending and axial,etcetera,let us quickly look at 

the summary for our interested designerwhat would be the equation which are readily 

available in the literature, let us look at this. 
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So, let us look into only aboutthree types of sections - I section and box section.All are 

thin walled sections,even I am also thin-walled,Iam not drawing it here.Let me draw that 

circle and tubes. The standard dimensions are marked hereand I call this thickness as s 

and of course this thickness as t. For this section let us say this is my band this is my d 

and this is tand of course we know t is very less thand,it is a thin-walled section.For this 

section this is the diameter dand of course thickness of the section is t and we also know 

that t is much lower than d.So, we are looking for the plastic moment carrying capacity 

M p,we will also look for the axial load carrying capacity N p,we will also look forthe 

shear capacity V pand we also look for a torsion capacity T p. It is asummary for our 

understanding. 

So, this isbth minus t pluss intoh by 2 minus t the whole square of sigma Y p will give 

me my M p.This is Ainto sigma Y p. This is area of the web, this is V p,Iam writing it 

here. This is shear capacity V p Aw intosigma Y p.Of course for shear, we are applying 

thevon Mises failure theory, so it isby root3 and for T P it is 2bt square.Shear and torsion 

areanyway connected to each other; we already explainedthat in the last lecture.And for 

this box sectionssigma Y p, this is Asigma Y p, this is 2 dt sigma Y p by root 3. This is 

2d square t sigma Y p by root3. As for the tube sections are considered,it is d square t 

sigma Yp. 
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This is A sigma Y p where A is area cross-section. In my case,area of cross-section is 

actually equal to pid into t,it is not pi d square by 4. The circumferential thicknesswrite it 

as pi d into t into sigma Y p. So, 2 dtand pi by 2, just now we saw this derivation. So, this 

gives a comprehensive comparison of most important commonly employed cross-

sections for members in marine structures where I have a table which gives me M p, N 

p,V p, T p,independently.Now, what I am interested is when the bending moment and 

shear force or bendingmoment axial force are acting together, whatdo they influence on 

the plasticmoment carrying capacity?When they are acting independently, this is what 

the table is which we discussed sofar.We will now discuss what is the combined actionof 

this? Is it clear, can I erase this?  



(Refer Slide Time: 07:48) 

 

Let us look atbending and axial loadtogether. So, we will take up a rectangular section, 

we will also take up a I section later, first let us understand this.Let us say the section is 

having breath as band depth as h.The section is subjected toan N moment which is M p 

comma N, I will come to what is Mp comma N, also subjected to an axial forcewhich is 

N pcomma m,Iwill come to that whatit is. NowM p comma Nis the reduced 

plasticmoment capacity due to the presence ofaxial force N p,we should say Nnot N p 

and N P comma M is the reduced, the important concept is reduced here, plastic axial 

load capacitydue to the presence of M. We are looking at that. The stress distribution 

looks like thisand the combined action it looks like this,sigma Y p,sigma Y p and let me 

call this distancease by 2.Of course, this is positiveand this is negative. 

This is awhich showsthe stress distribution underthe combined actionof M and N.I split 

this into twoparts, I say this is equal totwo parts.One is because of M alone, and other is 

because of N alone.I say this isnegative and positive and of course this remains as E by 2 

and of course now this becomes E.bis due to bending aloneplus this is positivewhich is N 

alone,actually this is N P here. So, b indicates the stress distributionunderM alone and c 

indicates stress distribution underN alone. I am looking for the combined action which is 

a, but I will derive this in part and parcelof b and c.So, I could call this as pure axial 

caseand I could call this as pure bending case.M alone means pure bending case. 



(Refer Slide Time: 13:23) 

 

Now I am interested in finding out the pure bending casewhich I call as M p comma N 

which is this, the pure bending caseis given by a standard equation which we already 

know because this becomes a depth of elastic core, itcan be computed as below.Though 

we have done it, quickly we will repeat this.Let us have a rectangular sectionwhich has a 

distribution like this. We call this as elastic corewe already know this.Now I construct 

this astwo parts,one is fully plastic which is b and hminusthe elastic part.This is fully 

plasticminus the elastic part which can be done asM for fully plasticwhich is not true but 

still is given by this is b and this is h, so bh intoh by 2. 

We should sayput it like this,bh by 2 intoh by 2 of half,h by 2 sigmain the centreand half 

of the rest cg of that particular portion and we have twice of this,the two parts. So, that 

gives mebh square by 4. Is it not, whereas for the elastic portion,the elastic portion is I 

can superimpose this here and we already know this is e by 2.We can write this as b into 

e by 2 into half of thatinto two parts of that, which will give me be square by 

4.Therefore, now I can saythis nothing but for this notationwhich can be bh square by 4 

minus be square by 4 of sigma yp,we can remove this. 
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b h square by 4 1 minuse square byh square,this is Mwhich we can call this as into sigma 

y of course which iscan call as M p 1 minus e square by h square. So, standard 

relationship because this multiply by this is nothing but your M p,equation number one. 

N pMwhich is pure accelerate force, in that case for this rectangular section could be 

simply b into e into sigma Y p.If you look at the drawing or the figure one which we 

made earlier,the elastic part will have a depth of v by 2 and e by 2 which is e, the breath 

is b and sigma Y p;which I can rewrite this asb h sigma Y p into e by h,we can write like 

this, b into h is a whole area of the section. So, I can say this asa into sigma Y pof e by h, 

a into sigma y pis N pinto e by h.This is N p,call this as equation number two. Now 

combineone and two. 
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Simply by combining one and two,we are now studying the effect of bending and axial 

force together, plastic capacity. So, this is M p N, that is what we are addressing. So, I 

should say M p N by M p which will give me 1 minus e square by h squareplus N pMby 

N pthe whole squarewill give me e square by h square. When I add these two, I will get 

1.This is called p-M interaction diagram; this is called axial force and bending.You can 

try to plot this, it will look like this. If I try to plotM by M pand N by N pand if this value 

is 1, this value is 1,look like this. So, I should say plasticcapacityof the cross-section 

undercombinedactionof axial loadand bending for a rectangular cross-sectionwhich we 

call as famously p-M interaction diagram. Here pdoes not stand for plastic, this p means 

axial force in M S bending;bending moment in equationis here.Having said this,let us 

extend this concept to an Isection. 
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Same way we can do I section because I section is nothing but sum of rectangles of 

members, is it not. We have seen for one rectangle, we are now going to see sum of 

rectangles.Let us do for I section.I call this ass and this of course as tand this as band this 

as h.We call this asarea of the web and I call this as area of the flange.A f stands for area 

of the flange and Aw stands for the area of the web.Let us say I have astress 

distribution,this is subjected tobending and axial force. So, the stress distribution goes 

like this.By the way what is this axis called where I am marking the stress 0, what is this 

axis called? Zero stress axis or equal area axis. Let us say this is sigma Y p, this is 

alsosigma Y p and centroid of the section is somewhere hereand this distance is e by 2 as 

you had earlier same manner. 

So, I would say nowthis section is equal to where, this is also equal to e by 2, thisis also 

equal to e by 2 subjected tomoment onlyplus wherever these two values are there, I have 

an additional section on this stress distribution because these are all sigma y pand 

become like this, so sigma Y p here.So, already this are same as meaning as a, b, c,a is 

the combined action, b is the bending alone and N is the axial load alone. So, this is what 

we callas zero stress axis. So, this is zero here.Let us assumethatthe zero stress axisis at e 

by 2 from the centroidal axisas shown in the figure. Bending moment of the sectionis 

given as below,M is going to be M pminus, same equation I am using which we did for a 

rectangle,there we said it is be square by 4. Now I will say Se square by 4 because b in 

this case is S of sigma y p is equation one. 
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Axial force Nis given bywhat will be the value of N? Axial force N has to come only 

from the webandthat is the N part.N part is not acting on the flanges,N is only purely on 

the web. Sowhat would be the value, area of the web into sigma Y. So, I should sayes 

into sigma Y p,e is this valueactually,e by 2 e by 2 and S is the thickness of that portion, 

soequation two.Already we have an expression for N pwhat we derived in the last 

application of a rectangle. So, I am going to rewrite using these two equations one and 

two. Socombining one and two, I will slightly modify this, see how we are doing it. 

Thisis how the standard form given in the literature. So, we are doing it like this. 

M is given as M p minus, so I have es sigma Y p in terms of n here. I am going to 

substitute that here because I have es sigma Y p here. Substitute that here and do 

somemathematical manipulation. So, after doing thatI write this as N squareby N 

psquare. N palready we have,it is nothing but a into sigma Y p. So, A by Aweb alone,this 

is for the entire sectioninto Sh omega square by 4 of sigma Y p.You can substitute back 

for N pseparately and you will see automatically you will land up in 1 minus 2 or 1 and 2 

combining you will get the same equation of 1 and 2 here.This is how it is being 

expressed in the literature.So, I am giving exactly the same equation here. 

So, simplifying further e can say M by M p,I can call this equation number three.Two is 

here. So, rewriting threeM by M p plusN by N psquareof A by AwsquareZ w by Z p, Z is 

the section modulus of the web alone and Z p is the section modulus of the entire 



sectionis given as one,where Z w is the plastic section modulusof the weband Z p is the 

plastic section modulusof the complete section. I will remove this; I would like to retain 

this. Now I can remove the figure,no problem. 
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Sofor I sections,you can compute Z p as follows,that is section modulus of the entire 

section. Plastic section modulus of the complete section as Z p. So, Z pis approximately 

equal to because we are doing some adjustments. It is area of the flangeh minus t where 

h is the overall depth and t is the thickness of the flange alone plusZ of the web. So, area 

of the flange can be simplyA minus A w by 2 because there are two flanges into h w;h 

minus t will give you h w plus Z of the webA wh w by 4,that is web alone. Now I can 

say,there is A w s w by 2 here by 4 here, I can simplify rewrite this and saying that,it will 

becomeA by 2 of h wminus A w h wby 4. So, I can express Z pnow as Z w ofthat isA w 

h w by 4 2Aby A wminus 1,A w h w by 4 we already know it is Z of the web,2A by A 

wminus 1, that is Zp. 

I already have the Z p value and Z w value in this equation here which I call as equation 

numberfour. I call this equation numberfive.Now substitutingfivein four, I can rewrite 

four like this which is Mby M p plus Nby N psquare1 bytwice of area web by A 

minusarea web by A the whole square equal to 1.Now equation six is the interaction 

diagram.Let me check this equation again,M by M p N by N psquare 1 by A web by 



Aminus A web byA square is equal to 1. This is true for a specific condition whereN by 

N pis much lower thanA w byA. 
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That isaxial load capacityNislesser than the web capacity.Web capacity is nothing but A 

w into sigmaY p.If it is true, this becomes interaction diagram, if it is not true foraxial 

load capacitygreater than the web capacitythat is A w sigma Y p,thenthe equation goes 

slightly different.Let us derive that again. Stress diagram goes like this.Now the 

difference between the zero axis stress and the flange,this value is called asc the offset 

between the top of the bottom flange to that of the zero stress axis is given by an offset 

by name c,that is the combined action when the axial load carrying capacity is higher 

than the web capacity,it is very simple. 

If the axial load carryingcapacity is lower than the web capacity, obviously, the zero 

stress axislies in the web. Since the axial load capacity is much more than the web 

capacity, it comes to the flange. It comes to the flangenow; itis coming to the 

flangesomewhere here. So, this can be now said asa pure case of stress rectangles or 

stress distribution diagrams ofplus. So, this is case a combined action, this is pure 

bending, and this is pure axial,this is N, and this is M, this is plus. 
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So, c wherec is the offsetbetweenzero stress axisand the inner flangeas shown in the 

figure. So, in this case nowM will be equal to M p minus as we did the last caseb c 

because this is c and the width at that is b. So, b c into h w plus cbecause this is h w 

height of the web, there is c added to it now,h w plus c of course plussection modulus of 

the web aloneintosigma Y p.And the axial force Nwhich is taken from the figure c is 

nothing but the area of the web.Now web alone is not there, you have got some part of 

the flange also. So, that is going to be b into c twice, there are upper and lower both 

right, ofsigma. So, for a thin-walled sectionc is much lower than h w, c is very very small 

compared to h, this is h w.c is much lower than h w. 

So, c square term and all will go away from here,we can neglect them. Socombining the 

above I can call this equation number one again, I can call this as equation number two 

again or combiningone and twowe getM is equal to M p becauseyou have b c, sigma Y 

p,you have got A w, sigma Y p which areall present in the equation above I am 

justsubmitting them and then rearranging them.So, M is equal to M p minusN of h w by 

c plusZ wsigma Y p,I call this equation number three. FurtherZ p in this section is 

approximately equal to Zw of 2A by A W minus 1,that is what we have seen in the last 

derivation for I section, we have seen this.So substituting back here,I now generate the 

interaction diagram. 
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So now, the interaction diagrambetween M and N is given by M by M pplus N by N p 

of1 by 1 minus A w by 2A,this is 2A hereminus A w by Aby1 minusA w by 2 A of twice 

of this.Let me write this slightly in a different manner,minus AW by Atwice of1 minusA 

Wby2 A. Let me check, itis equal to 1.That is the interaction diagram now where in my 

caseN by N pis much greater than or equal toA w by A;that is the second case. Previous 

case was the otherway.I can rewrite this equation back again,rewriting equation four,M 

by M p of because I have got common terms I can rearrange them,1 minus A w by 2 A 

plus N by N pas1, that becomes the interaction diagram.I will plot this; then we will stop 

here. 
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So if you try to plot this, the interaction diagram looks like this. Thisis my M by M p,this 

is my N by N p,this is my value at one and one,so obviouslyat A w by 2 A or A w by A 

when it is zero,this becomes a linear curve. So, it gets a straight line. I can call this as A 

w by Ais 0. For any other value the curve goes, I think I can do it in a different color.The 

curve goes and this bulges out. Then parallel one bulge out,parallelone bulge out for 

different values ofA w by A of 0.6,0.4, 0.2 and soon. So, this is my plasticcapacityof I 

sectionsunder combined action ofM and N fordifferentA wby A ratios.In next class we 

will look at the box section and the tubular sections. Then we will move on to plastic 

capacity of plates. We will talk about collision problems, that will conclude the module 

one.Any difficulty, any doubt here.  

Thank you. 


