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Lecture - 17 

Plastic Design -II 

In the last lecture we discussed about the necessity or the idea which prompt and the 

researches to shift the design principle from the elastic to that of our plastic one, where 

the researches or there the designers wanted to make use of the addition resisting of the 

material, which is available beyond the first hill point. First hill formation is generally 

because of the presence of research in especially in particular material like steel on my 

on steel, so one can think of using or utilizing the reserves strength which will enable 

more or less complete utility value of the material. Because I can stretch the material to 

maximum load carrying capacity, there are 2 reasons why the designers wanted to shift 

parallels, transept parallels from elastic design quality Medlow design were the 

following; 

1, the load carrying capacity can be here in enhanced from held value to ultimate value 

and the same time the ductility feature of the material can be used fully. So that it is 

guaranty that the material will not fail until the strain reaches, the strain the ultimate the 

value or the till the ratio is expected to full fill the reserve strength of the material, so this 

2 were inherently prompted the designers to shift the design principles from elastic 

design mechanism to that of a plastic design principles. Provided this system can be 

applied only for material and structures. Material should have enough ductility and the 

structure should be startlingly in terminate, as the higher of higher order of into 

terminuses in the system, the benefit is far and far. Because essentially theductility factor 

or the ductility capacity will try to redistribute the movements from high listed section to 

the next high listed sections. 
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So we will continue to see what would be themethodology, may be we can estimate the 

movement carrying capacity of a simple sector or what I will do iswill considera beam, 

subjected topure bending. The beamshould have at least 1 maxof symmetry. It can be of 

any cross section, of any cross section, that is notimportant. 
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The cross section should at least have 1axis of symmetry. So let us say I have a beam, I 

subject thisbeam to pure bending. So the beam will start bendingand of course, there will 

be an axiswhich is very important to discuss, will talk about axis later. So I amapplying 

pure bendingon movement at the ends of the beam, for the beam is bent and keeps on 

increasing the movement and the beam will keep on bending. Let us say the beam has 

any specific cross section of any shape. 

These are the extreme fibers of the beam, now the beam will have 2 axis actually, one is 

called as neutral axiswhich a called as neutral axiswere the strain remain 0, the other one 

is a new axis which we call as equal area axis. I am drawing a low line; hereI call this as 

equal area axis. So initially the strain in the strain forever and correspondingly this this in 

extreme fiber will remain lesser then the yield value. 

The first case, as a further keep on increasing movement at the ends the extreme fibers 

will reachthe yieldvalue that may bethe next stage. Now if you further increase in the 

movement and the ends of the beam then you will see that some section of the cross 

section will be yield, soyou will find that till this point and till this point you willfind the 

strain, oh sorry stress, will be equal to sigma y and this will remain still elastic, I can 

callthis as what I call as an elastic core.  

So the section will startremaining elasto plastic, because there is an elastic core presents 

there’s a plastic core also present in the section. As it keep on further increasing in the 



movement, the stage willcome ultimatelywere the entire sectionwill get plasticized. So 

there is very interesting thing which happens here, when the entire section get 

plasticized, the stresswill move in this format. Whereif we call this is a compression, this 

as tension.  
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Because you see here, when I am applying the movement it the end bottom fiber will 

longestand the top fibers will compress. So I can say this is compression, this is 

tension.So I am marking compression and tension in the extreme top and bottom fibers. 



So interestingly the neutral axis will start shifting downward and will merge with the 

new axis called equal area axis. So the neutral axiswillshiftdownwardsto mergewith 

equal area axis, so I can say now this is fullyplasticizedsection, fully plastic. 
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This is elasto plastic, of course this are all completely elastic. Since this is equal area 

axis, obviously C should be equal to T, that is why is called as equal area axis so the 

figure may not show that because this section is not uniform. Let us say this is my 

compressive force C, this is my tensile force T and this act as a CG, Let us take y bar 1 

this acts as aCG asy bar 2. I can redraw this figure slightly in a different manner saying 

that; Let us see the sectionas gotfully plasticized. 

I can call this is my total compressive force, this is my total tensile force, can call this as 

my y bar 1, thisas my bar 2, whereC is the totalcompressive force, where T is the 

totaltensile forceand this is nothing but, myequal areaaxis. So I can callthis as G1, this as 

g 2, where G1 and G 2 are the centered points of the compression tension area 

respectively. So I can call thisas A1and this as A2. 
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And so, while loading the section from the extreme fiber reach elastic on ayield value to 

the entire plastic section, we make certain assumptions. Material obeys Hooks law 

untilthe stress reaches, I should sayfirst yield value.So, on further straining, stress 

remains constant and sigma y and remains constant. Now upper and loweryield points in 

tension and compression fibers are same.  

Material is homogenous and isotropicin bothelastic and plastic states. Plane transfer 

section that is a sectionwhich is normallongitudinal axisof the member so what do you 

understand by this, I have a member, this may longitudinal axis member, I cut a section 

which is perpendicular to the longitudinal axis of the member.  

If the member has a breath Bthe section is also have a breath B which I am drawing. So 

by let us say, so this section is normal to longitudinal axis and this remains plane. Ok this 

is plane, will remain planeand normalto the longitudinal axis of the member after 

bending also.There is no resultant force acting on the member. The cross section is 

symmetricabout an axis through whichits centroid passes. 
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And is parallelto the plane of bending, when it, what does it mean. Suppose I am trying 

to locate a centroid of the section about which the section remains symmetric and that 

point lying on the plane which is parallel to plane of the bending. Ok, no shear force axis 

a section only bending movement is considered. The beam is subjected to M only, no 

shear forceis considered. 

Most importantly every layeris free to expand and contractand remain independentwith 

respect to the adjacent layer. What does it mean, In a given prosecution ifI say this is an 

equal area axis of above which the centroid is located is section remains symmetric.I take 

any fiberin each fiber along the cross section or having freedom to independently expand 

and contract.  
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There is no fiction between layers. Having said this I will retain this figure, let us now 

derive the movement carrying capacity of this beam, which is the plastic movement 

carrying capacity. So we already said Cis equal to T, the total compression should be 

equal total compression force in the cross section and we already knowC is equal to 

sigmaone y into A 1and this is also equal to sigmay into A2. Because I say A 1 area of 

compression as a C from this figure and A 2is area of tension, C from this figure they 

should remain same. WhyI am using sigma y, because it’s an assumption that once a 

stress reaches the yield value there after the stress remains constant at sigma y. 

So, this implies thatA 1 is equal A 2, which implies thatthis is nothing but, A by 2 

because A 1 plus A 2 is total A. Let me take in take movement aboutmovements of 

forcesabout equal areaaxis, about this axis they will form a clock ways couple ;I should 

say thatthat movement should beequal to C into y bar 1plus T intoy bar 2 ,which is sigma 

yinto A 1 into y bar1 plus sigma y A 2 y bar 2. 

I should say sigma yA by 2y bar 1plus y bar 2, so this gives a similar comparison to me 

sayingsigma yand ZPisM P is also equal toM ultimate. When I use introduce a new 

symbol Z P, Z P is calledplastic section modulus, y is given bya by 2 y bar 1 plus y bar. 

Now how do you define the plastic section modulus? 
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Can see here plastic section modulus has 2 components, one is the area other is y so 

product, so I am taking movement of the area about an axis which is separated up and 

below or top and bottom or compression tension by y bar 1 y bar2. So I should say that 

plastic section modulus is defined asas this static movement of the cross section above 

and below the equal area axis.It is also called asthe ‘Resisting Modulus’of the 

fullyplasticized section.  

Therefore plastic movement of resistance which is also equal to that ultimate 

movementcarrying capacity of the beam is nothing but, sigma y into Z P that becomes 

very interesting a simple derivative. I can compare this with elasticmovement carrying 

capacity which we all know is nothing but, sigma y into Z, to make it very clear I may 

even write Z e here does not make any different. This is called simply this section 

modulus which we all know. So this weknow, this is a new one which have derived for 

now. I can also find ratio between these2 movement carrying capacity there is M P by M 

E, I can find that which I will call as a shape factor. I will introduce that.  
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Now we have taken a general cross section where area is A and we found out y bar 1 y 

bar 2, we said A by 2 etcetera. Now for standard cross sections can we find these values 

and way to find out what is actually Z e. Can you find out, will take a standard cross 

section, may be start with the rectangular cross sectionthen will work out some other 

cross section and see how can a really find out the plastic movement carrying capacity of 

a given cross section readily. Ok, I will take an exampleof a rectangular cross section;I 

will take a rectangular cross section. 

Let us say the breath of the cross section is b and depth of the cross section is h. I am 

drawing an elasto plastic section which has an elastic core depthas e, e isdepth of 

theelastic coreand of course the stress hereremainssigma y.Sothe section is elasto plastic, 

e denotesthe depth of the elastic coreas shown in the figure. Now this section as got 2 

movement carrying capacity, 1 is a capacity of the elastic section aloneand this capacity 

of the plastic section. There are 2. Let me call.  
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Let M 1 be the movement capacity of the elastic sectionand M 2 be the movement 

capacityof the plastic sectionand we all now agree the total movement carrying capacity 

section M total will be a some of M 1 and M 2. Let me now estimate M 1 separately M 2 

separately, which will get M total which will be the total movement capacity of the 

elasto plastic section, which I can call simply asM. Nowto find M 1, that is the 

movement carrying capacity elastic section. 
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So M is going to be simply stressmultiplied by the first movement of the area, which is 

nothing but, half baseheight because this is e by 2and the CG of the area will be 

somewhere here, which is going to be a call this as e by 2 this plan and this is for 

examplex bar and this value will be equal 2, 2 third of x bar. I am writing it of by 2 

which is going to be 2 third of e by 2and such sections are there one above the axis one 

below the axis. 

Ok can I multiply by 2 because this is symmetric. So even simplify this, I will get sigma 

y b e square is that all right and calling as M. Let me call this is equation 1. Now I want 

to findM 2, this I well do slightly in a tricky manner, what I will do is if I section is fully 

plastic; if a section is fully plasticthen I will get the Z value, the z value as b h by 2. 

This is h, you see from the figure, this is h and of course, this is b, b h by 2 and h by four 

of twice that is a fully plastic section. It isok, which will becomeb h square by 4 that 

fully plastic. I can this as Z 1 which is fully plastic. But, the section is not a fully plastic 

it is partially elastic also; it means I know I have a section whose stressdistribution is 

also elastic, which has the elastic core equals e. 

Now what we do, I replace this part by dotted line, can a do that? It’s going to be equal 

now 1 is C, 1 is d equal. So I find only this part and see what happens, so I can call that 

Z2, which will be b into e by 2 b into e by 2because this is e into e by 4 half pies. 
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Which will become b e square by 4is that ok. But, my real section is combination of this 

2. So I can know say, let the more thisM2 is the moment of that plastic alone which is the 

let resistant of total plastic minus elastic, is it know, that’s what M 2 is M 2 could be 

sigma y half b h square by 4 minus b e square by 4. Do you agree? So the total 

movement carrying capacity M is a nothing but, M 1 plus M 2which issigma y half, b e 

square by 6plus b h square by 4minus b e square by 4. Can you quickly simplify this, so I 

can say sigma y half b h square by 4minus b e square by 12, is itok, which I say sigma y 

half b h square by 4 one minuse square by 3 h square. Can a write like thiswhich is my 

M, is it not? 

I will call this equation number, this off course 2 so call this3. 1 is here, now for a 

rectangular section which we are discussingZ p is given by a simple equation which is a 

by 2 half y bar 1 plus y bar 2, is it not. Which can be simply b h by 2 that’s my 

rectangular section, b and h are the cross action section properties of the section. A 1 or y 

bar 1 will nothing but, h by 4 plus h by 4which can give me b h square by 4. 
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Is itok? I have b h square here also, now I can replace the equation asM is now rewritten 

as sigma y b h square by 4, 1 minus e square by 3 h square which can now written as 

sigma y Z p of 1 minus. With it, we already saw this in previous step that I can replace 

this as M p, that is plastic capacity the section 1 minus e square by 3 h square with is M, 

that is a very interesting outcome of the derivation. 

What is the inference which is derived from equation number 4, if you know the 

movementapplied on to the section, if you know the bending moment coming on to the 

section you can easily estimate the depth of the elastic core efrom equation 4. You may 

wonder how. Look at equation 4. 

The variables areM , M P, e and h out of which given cross section h is known to me ,for 

a given cross section depth as section is known to me for a rectangular. e is what you are 

determining, agreed? M is known to you, you know M the movement coming on the 

cross section. Now M P by M is the simply the shape factor, so if you know the elastic 

moment in the cross section which is nothing but, simply sigma y Z P by sigma y Z 

which is nothing but, sigma P sorry Z P by z elasticwhich is what I call as Shape factor. 

So I know M P alsoI can trace and find out what could be the depth of the elastic core for 

a given movement in the cross section. Any doubt here? So equation 4 can help you to 

estimate the depth of elastic core for any moment in the cross section M, Let us see what 

happens so the equation when the elastic core does not exist, it means fully plastic. 
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Ok it is fully plastic. So before that let us try to find the shape factorsfor different cross 

section sections which were interested, let us say obviously we take the rectangular 

section for the begging. The cross section is known to mewhich isdesignated as h as the 

depth and b as the breath.  

We already know shape factor is ratio of plastic section by elastic section. Modules Z P 

we already know is a by 2 y bar 1 plusy bar 2, which is nothing but, b h by 2h by 4 plus h 

by 4, which is b h square by 4. Whereas as the elastic section modules as for the 

rectangular section is nothing but, I by y max, which is b h cube by 12 into 1 by y max in 

my h by 2, which gives me b h square by 6. I can find shape factor as Z P by Z ewhich is 

b h square by 4 into 6 by b h square. 

Which will give me1.5. What does it mean, the plastic movement carrying capacity of 

rectangular section is 50 percent more than the tuff elastic which is 1.5 times of sigma y 

half Z e is that right, so my moment carrying capacity of a rectangular section of a beam 

is 50 percent more than that of an elastic section. So shape factor will give me the 

induction what would be the additional capacity of a section, when you do plastic design 

the section is a remaining same, I am not increasing width and depth of the section, b and 

h remains same, just by shifting my design philosophy from elastic to plastic I get 

additional load carrying capacity in the section which is a gain, is it no, this for rectangle. 
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Now look at circular sections. Let us say the radius of the section is r, we already know 

the CG of the upper half which I call as y bar 1 will be nothing but, 4 r by 3 pie, is it 

not?Which will as same as the low section, also which will be y bar 2, y bar 2 are also 

equal to 4 r by 3 pie. So I know the shift factor is given by a simple expression. 

Z P by Z e and Z P is given by a by 2 of y bar 1 plus y bar 2, which is going to be pie r 

square by 2, pie r square is the area of this section, y bar 1, 4 r by 3 pie plus 4 r by 3 

pieso which will give me 4 r cube by 3which will be Z P. Ok.Z elastic I already know 

nothing but, I by y max, y max in my case this r, I is let us a pie d per 4 by 64 by 1 by r. I 

can say pie by 64 of 2r to the power 4 1 by r. See tell me what we simplify this. 

What is that pie r cube by, no no please check. So can we quickly tell me what is yes? 4 r 

cube by 3 into4 by pie r cube is it16 by 3 pie? What is value? What is this value is it 

1.69? 1.69, let make it is 1.69, so if have a circular section the plastic moment carrying 

capacity M P is a about70 percent more than elastic. 
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Now let us quickly compare rectangular that of a circular section which is solidsolid. The 

moment carrying capacity of the solid circular section is larger than rectangular. It is 

because of this reason in marine structures people you circular instead of rectangular 

because movement carrying capacity is higher the plastic moment carrying capacity is 

higher but, commonly without use solid section, we use angular that is tubes, now a let 

us see what is a shape factor for tubular section. 

 So I call this is r 2, this is r 1, when off coursethis as t. Let us quickly see what is a 

movement of inertia of this sectionwhich is pie by 64, D 1 to the power of 4, D 2 the 

power of 4which is pie by 64, 2 r 1 to the power 4minus 2 r 2to the power of 4.So we get 

pie by 4 half r 1 minus r. Is itI calls equation number 1. See we want to findZ elastic orZ 

y, which is the section modulus I should say is nothing but, I x x by y max, y max in my 

casesr 1, ya so which will be pie by 4 r 14 r 24 by r 1. That is my Z e, now I am 

interested in finding y bar 1 which is CG of this section, only this section. So what we 

naturally do is I will take simple equation of a y bar by sigma a. 
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If you want to fine y bar, I should say sigma a y bar by sigma a and find y bar, first 

principle. Let as do that here, so let us say pie r 1 square by 24 r 1 by 3 pieminuspie r 2 

square by 2 4 r 2 by 3 pie.That is sigma a y bar, is it not sum of sigma a y bar. I put 

minus because angular section do very sigma a, which is pie by 2 r 1 square minus r 2 

square, that is my area of this section. I am only finding your pie bar one y bar 2 is below 

that we see let simplify this get me what the value is which will simply to not to be 2 by 

3 r 1 cube minus r 2 cube byPie by 2 of r 1 square minus r 2 square, do you agree? 
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That is my y bar, which can be written as4 by 3 pie half r 1 cube minus r 2cube by r 1 

square minus r 2 square. Is it ok, I just simplified this? Now already know is Z P, Z P is 

nothing but, A by 2 half y bar 1 plus y bar 2.A that is nothing but, pie 2 half r 1 square 

minus r 2 square that is half of the area with this4 by 3 pie half r 1 cube minus r 2 cube 

by r 1 square minus r 2 squarethe whole twicethat. Let me put it to 2, multiplying 2 here, 

so this goes away, his also goes away,this also goes away; what is a left over, 4 by 3 r 1 

cube minus r 2 square, is it not, that my Z P. 
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Iam looking for shape factor which is Z P by Z ewhich is 4 by 3 half r 1 cube minus r 2 

cube divided by what is a D, we already have equation 1 ya pie bar 4 half, ya can you 

give me this, is itok? So I can say, 16 r 1 by 3 pie simplify 16 r 1 by 3 pier 1 cube minus 

r 2cube.By r 1 4 minus r 24 that, so let me sayr 2 by r 1 be k, so S now becomes 16 r 1 by 

3 by 3 pie r 1 half, which is 16 by 3 pie half l minus k cube by 1 minus k 4. Is it fine, so 

for k equals 1. 

That is r 2 or r 1 same that solve it to you, you will find; not this, for r 2 equals 0 that is 

inner radius,this only 1 radius, you will get this S1.698 which is same assolid circular. So 

what all we know is if you know the shape factorfor any given fraction, if I can find out 

shape factor for any given cross section,  

I can always find out what is the enhancement in my plastic moment carrying capacity in 

comparison to that of elasticmoment carrying capacity. What you wanted to know is only 



the shape factor. Many other iteration cores for most other iteration for most of the 

section like standard table, the shape factor is given. For example, I section, chance, 

angles; shape factor is known so is given theta like a hand book. So I can easily find out 

select section whose shape factor maximum so that I will get the maximum gain in a 

movement carrying capacity of the section. So that’s what we are interested conveying 

today. 

That how 1 can find out the variation in anelastic core, in a given section if you know the 

moment at any section number 1, number 2 how plastic moment carrying capacity can be 

easily determine for a given cross section if you know shape factor of a given cross 

section is a given data in most of the hand books of steel cores. You have also 

understood that circular sections have more capacity of load carrying capacity in terms of 

plastic moment compared to the rectangular for which circular sections are more 

commonly used in many structures, essentially tubular sections but, they have more 

capacity.  

Thanks. 

 


