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So, in the last lecture we discussed about the response of a damped forced vibration, 

single degree freedom system model, where this was the equation of the response x of t 

is the combination of the complementary function, and the particular integral, where we 

have the transient response part and the steady state response part, because this is a 

function of forced frequency, whereas, this is the function of the natural frequency of the 

system. We know that omega d the damped vibration frequency is a function of the 

natural frequency of the system, which is system characteristic, and of course, this is 

depends on the initial conditions.  

Whereas, c and d does not depend on initial condition, where we know that c is p naught 

by k, and d is minus p 0 by k, the same (Refer Time: 1:30). So, it has not depend on 

initial condition of x 0 and x naught 0; therefore, this response will always exist in a 

given response equation. Whereas, this may depend on the initial conditions of x and x 



dot and (Refer Time: 1:50) vanish depending upon the availability of the boundary 

conditions, the initial condition given to the response. So, we call this steady state 

response and transient response. Now, let us pick up this equation, maybe this is equation 

number ten or eleven I do not know, let us say ten. So, let us substitute this value and see 

what happens to my equation in x of t, when the natural frequency is as the same value 

that of the execution frequency, because this is solved when omega not equal to omega n. 
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Now, let omega n is seen as that of the x addition frequency. We call this as resonance 

response. The objective of this derivation is to understand that if I introduce damping, 

even at resonance the buildup will not infinite (Refer Time: 2:48) we have to see that, 

because we already saw in a damped in an undamped forced vibration, the response was 

building up by phi value at every cycle, and it is becoming unbounded at the resonance 

frequency. Whereas, in this case we have the objective is to check whether, it is still the 

same case in case of resonance response; that is the objective of this derivation. So, we 

know the complimentary function will not change, which is going to be as same as e 

minus zeta omega n t of a cos omega d t plus b sin omega d t which will not change.  

Whereas, the partial integral what we have evaluated now, which will be p 0 sin omega t 

by there is a p 0 by m here, because we divide the equation motion entirely by m d 



square plus c by d m d b m of d plus omega n square, thus the particular integral for this 

particular problem. Now, we know the rule, for example, if the expedition function is a 

science model or a trigonometric function, I may say d square is minus omega n square 

or omega square. So, substituting d square as minus omega square as per the rule, and 

also recollecting omega n as the same as omega; that is the resonance part we are looking 

at that, that is what we are looking at therefore, these 2 will go off my p I will simply 

become p 0 by m sin omega t by c by m of d. So, we can also say p by m sin omega t by 

2 zeta omega n of d, because we know c by m is 2 zeta omega n then we can say p 0 by 

m let us say d square of 2 zeta omega n d of sin omega t which becomes minus p 0 by m 

because omega d square is minus omega square. 
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So, I get minus p naught by 2 k, because omega n square is k by m this omega and 

omega n goes away cos omega n t; that is my particular interval. So, my entire solution 

or the complete solution will become e minus zeta omega t of a cos omega d t plus d sin 

omega d t minus p naught by 2 k zeta cos omega t. Here I write omega n or omega does 

not make a difference, because on looking at the function at omega equals omega n. So, 

does not make any difference. So, let me call this equation number eleven, which is the 

response time history for a damped forced vibration at resonance. Now let us go back to 

the general expression, I will get back here again, and try to derive the dynamic 



amplification factor. Let us see what how do we do that. 
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So, the general solution is given by this is a specific solution, where x of t is derived at 

omega equals omega. The general solution is what we wrote earlier I am writing the 

same equation back again, is given by x of t e to the power of minus zeta omega n t of a 

cos omega d t plus b sin omega d t plus p 0 by k 1 minus omega by omega n the whole 

square; that is the general solution. Now, let us talk only about the steady state response 

part of it. To make this equation in a combined and closed form, we will express 2 

rations. Let beta with the ratio of the frequencies. 
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The steady state response is given by, let us say x of t. I am looking only at the steady 

state part of it p 0 by k 1 minus beta square by 1 minus beta square square plus 2 zeta 

beta the whole square of sin omega t. Here I think this as a ratio as beta minus p naught 

by k 2 zeta beta by cos n t. Let me call this equation number twelve. Now, I can express 

this equation twelve graphically, because there are 2 components here sin component and 

cosine component, slight carefully this is cos, using what is called as an argon diagram. 

So, we can be drawn an argon diagram, and you can write this, express this graphically. 

There is an advantage of writing this I will show you how. 
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. 

Let us say there are four quadrants of this diagram, this axis represent the imaginary part, 

this represent the real part. So, our 2 values; 1 and two, I would say that they are offset 

from the vertical axis by an angle omega t, and I complete the parallelogram to get me 

resultant which is r. So, let us say that this arm, when I swing away from the angle I must 

get the sin component which is positive. So, I must say that this value should be 1 minus 

beta square by root of 1 minus beta square square plus 2 zeta beta rho square. There is a 

multiple of p 0 by k is also there and whole square of p 0 by k.  

Whereas, we all know that this angle is also going to be cos omega, this also going to 

omega t, because angle between the values are ninety, but as per as the cosine component 

is concerned it is negative. Therefore this value is going to be 2 zeta beta by the same 

denominator multiplied by p naught by k. I can now easily find the resultant of this, by 

squaring and taking a root of the sum of squares. So, let us see what is the resultant of 

this, and let us say the resultant is making an angle of theta by this. So, let us say this 

angle is theta. 
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The resultant of this, a sum of squares of this, if you sum of the squares of this p 0 by k, 

you get the numerator as root of 1 minus beta square plus 2 zeta beta the square of 

course, the squares of this divide by sum of the squares of this. So, it is 1 minus beta 

square the whole square plus 2 zeta beta the whole square, which will amount to p 0 by k 

1 minus beta square plus 2 zeta beta minus 1. Now I can express x of t which was the 

original equation twelve, the steady state response part, making use of this expression 

now, which can be rho sin omega t minus phi minus theta the rho is a resultant. This is 

given by this equation, this is equation number 13.  

So, r this is also equal to rho given by this equation p naught by k minus minus r, or you 

can write it like this the other way it is 1 and the same it is p naught by k 1 by square root 

of 1 minus beta square square plus 2 zeta beta whole square, whatever way you want to 

write you can. So, you can remember this easily r. Now from the expression there or 

from the argon diagram there, I can also write tan theta, the theta is the angle between the 

resultant and the arm here, is this value by this value which is 2 zeta beta by 1 minus beta 

square, the denominator gets canceled.  
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. 

Now I can say x of t by rho, because x rho is x static of x rho is s static of that is what it 

is a static of some value. So, therefore, rho by x static will give me the dynamic 

magnification factor which will be root of 1 minus beta square square plus 2 zeta beta 

whole square. Now that will go to the denominator, so 1 by root of this, this value. Now, 

we know beta is omega by omega n that is what beta is and zeta is c by 2 n omega n. We 

can plot this equation for different values of beta and zeta. 
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. 

I will call this as value of beta, and of course, this I will plot the dynamic amplification 

factor d at beta equals 0, let us say beta equals 0, at beta equals 0, d will be 1, it starts 

from one. And let us say beta at 1 2 3 4 5; beta 1 means omega equals omega n, it is a 

resonating band. So, approximately at this band let us say at this particular point, if zeta 

is not present if damping is does not exist. We have already seen that the response will 

become unbounded, this slowly shoot up will go to infinity unbounded, and then once 

the band is shifted, it will slowly come down.  

This is for zeta equals 0, there is no damping. now for any other value of zeta for any 

other value of zeta in d equation you will see that, the response will never be infinity, 

there will be some finite values let us take zeta at 0.220 percent, 0.2 the values 

somewhere here you substitute, you will see start from here it goes here, and comes 

down like this way, let us say this is zeta 0.2. Similarly zeta at 0.5 and so on, for different 

values of zeta the dynamic amplifier keeps on decreasing. It means the observation is d 

decreases with zeta increases, at zeta equals 0 d it becomes infinity; however, this 

happens only for a narrow band, very narrow, d becomes bounded for all values of zeta, 

except zeta equals 0, everywhere there is an upper limits of d.  
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. 

Now the argument was, what happens in x of t when zeta is not equal to 0, and omega 

equals omega n; that is the argument what we are looking at, at resonance what happens. 

So, at resonance when beta is equal to 1 for zeta not becoming 0 the dynamic 

amplification value is bounded. Let us see what is the upper limit of the value. So, let us 

take the equation of d back again and check what happens. So, d is 1 by root of, let us 

say 1 minus beta square of square plus 2 zeta beta the whole square, at v equals 1, d 

actually closely becomes 1 by 2 zeta this is analytical this is analytical from the equation; 

that is what happens here.  

Now, by experiments people have conducted experiments, and they have found that beta 

peak; that is response at beta equals 1 at peak, is founded 1 minus 2 zeta square. 

Substitute these values back in this equation; you will get d as 1 by 2 zeta root of 1 minus 

zeta square. For very small value of zeta this equation will give you the same expression 

as analytical. This equation will give you the same answer as that of analytical for small 

values of zeta, so they match; therefore, x of t at resonance.  
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Therefore x of t at beta equal 1 is e to the power of minus zeta omega n t a cos omega d t 

plus b sin omega d t plus minus p 0 by k 1 by 2 zeta cos omega t or omega n t does not 

matter, because I am saying beta is 1 this already we have derived that is equation eleven 

or ten, I do not remember check that, this is my response. So, what it mean is x of t 

which is the response of a single degree freedom system, is a closed form solution for 

beta equals 1 provided zeta is not 0. They have a close form solution. Now let us say the 

system starts at rest, let x 0 and x dot 0 be 0.  

Let us see what happens to x of t. I call this equation let us say thirteen a, let us check 

thirteen a and see what is my x of t, applying these conditions, because if we apply this 

condition a and b will go away, you can evaluate. So, just evaluate a and b and tell me 

what is the final answer for x of t applying this conditions, for this equation. So, I will 

write it down here, it is going to be p 0 by k 1 by 2 zeta, e to the power of minus zeta 

omega n t cos omega d t plus zeta by root of 1 minus zeta square sin omega d t minus cos 

omega n t 1 by 2 zeta cos omega n t is already there. Let us quickly look at the response 

ratio call this equation thirteen b. Thirteen b is nothing, but the value of a substitute for a 

and b from the initial condition. 
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. 

Now, let us find the response ratio, which is x of t by x static, because I have got p 0 by k 

here, which is x static, which will give me r of t as 1 by 2 zeta r the whole value, 

equation fourteen, same value will come back again. Now in this equation let us say for 

small value of zeta, is damping ratio. You will see that omega will be practically equal to 

omega d, because omega d is omega 1 minus zeta square, so for small values it is going 

to be equal. Therefore, my r of t for small values of zeta, for small values of zeta, so this 

will practically be neglected, this is very small value. It will become 1 by 2 zeta 1 by 2 

zeta, because p 0 by k goes here that is my response ratio e to the power of zeta omega n 

t, there is a d k; that is why it is minus, exponential d k of cos omega n t, omega d and 

omega n will be almost equal of cos omega n t taking this minus cos omega n t is that, 

this one, this term is there already. 

So, I can say 1 by 2 zeta e to the power of minus zeta omega n t minus 1 of cos omega n 

t; the equation fifteen, this is my response ratio. Now interestingly I want to capture, the 

behavior of response ratio, at zeta equals 0, undamped system what happens to it, 

because we know that the moment you provide damping, there is going to be decay. So, 

in the previous case what we did was, we said damping is not there, and we captured 

omega equals omega n the response, and we said it is unbounded. I was keeping on 

increasing phi for every cycle; that is the previous case. In this case if we substitute zeta 



as 0 this equation cannot be valued, because it goes to infinity is it not. So, I have to 

apply le hospitals rule, I will apply this and try to modify this equation. 
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. 

So, for zeta equals 0, equation 15 cannot be evaluated. So, apply le hospitals rule, and 

evaluate this. So, if you do that r of t will now become 1 by two, sorry sin omega t minus 

omega t cos omega t equation 16. Now I want to compare both the equations which 

equations I will compare. I will compare equation 16. I will compare 15. Let us say I will 

compare 2 equations now, to really check the response build up. Now I want to compare 

the response build up. 
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 One equation I have is this which is r of t is 1 by 2 zeta e minus zeta omega t minus 1 of 

cos omega n t. The other equation we have is, half of omega n t cos omega n t minus sin 

omega n t. So, the response buildup for this we know look like this, and we already said 

by every cycle it is increasing by phi whereas, in this case, it will increase and becomes 

steady. So, the upper bound is 1 by 2 zeta. So, this is the damped system at resonance. 

This is undamped system at resonance. So, one can write quick observations about this, 

comparing both these plots. The first observation one could write is, in both the cases the 

response build up is gradual for zeta equals 0 undamped system, response shoots up to 

practically infinity at large number of cycles, is very important. 
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The shoot up of response to infinity is not instantaneous, it gradually picks up, and what 

it means is this gradually disintegrates or damages the system. We can infer one more 

important fact in this. Once the system is set to be damaged, omega n of the system, 

because both are at resonance. Both are at resonance, then equation omega n or omega 

does not matter. Omega n which is the function of root k by m will change, why, because 

k decreases, due to strength or stiffness, degradation; that is what we address as damage. 

Once stiffness or the strength degrades, omega either decreases; therefore, omega will no 

more be equal to the excitation frequency, the system will be will exit the so called 

resonance band. It will not say in the band, it will come out of the resonance band. That 

is a very interesting characteristic of the system itself, which is used to the design of 

offshore structures. 
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. 

We can write one more observation, we shall remove this and write. At zeta not equals 0; 

that is for a damped system, even at resonance. Assume that the resonance band is wide 

enough to further cause damage to the structure. So, even at resonance, the response is 

bounded at 1 by 2 zeta. It means even for a small value of zeta, the binding is highly 

controlled, because is denominator; that is why even 2 percent zeta will work. You can 

also quickly see this plot to understand the comparison between under damped and over 

damped systems. 
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Let us plot the ratio instead of beta I can also plot t by t n, because both have them are 2 

phi by t omega b omega n I can plot like this also. Let this be x t by x static starts from 

one we know that the response ratio is one. If the system is critically damped what is 

meant by critically damped. Critically damped means zeta equals 1; that is what critically 

damped is. If the system is under damped, let us say zeta is 0. 1. The system is over 

damped, this point bulges out (Refer Time: 38:02). You must notice some observations 

from this figure; one, in all the three cases critically damped, under damped, and over 

damped, response is set to 0. It means analytically all the solutions will lead to re 

centering capability. 

In case of critically damped system, the response ratio is instantaneously bought to 0. So, 

the damage will be extensive, and system will fail without any warning; that is 

important, because the damage is instantaneous. In under damped system, the decay is 

progressive, decay of the response not the system, decay is progressive, because we are 

looking at r of t is progressive, and it will enable some elastic behavior in the system, 

enables some elastic behavior to the system. The moment I say it enables elastic 

behavior, stiffness of the system changes.  

The moment stiffness changes omega n changes, and the whole argument of omega 



equals omega n at resonance, is not valid. In case of over damped, large amount of 

members will be affected. To understand this you must convert the time (Refer Time: 

40:35) response to the frequency demand response, and a spectrum. You will know the 

energy of the spectrum. So, you will always see this is like lot of energy. So, the damage 

caused to the large members will be higher. 

So, therefore, in general in structural engineering people never prefer over damped 

system. Critically damped is of course, hypothetical. People generally prefer undamped 

systems only, because of the validity that, even for a small value of zeta, even at 

resonance the response will get bounded. So, there is no problem, and we generally go 

for 2 to 5 percent maximum in offshore structures.  

So, that is about the discussion on response behavior, of under damped and damped at 

resonance, response behavior of critically damped, under and over damped, not 

necessarily at resonance, but in general this is the understanding what we physically 

gain, which will help us to design the systems, because these equations and these 

understanding should be able to now emerge to design the system in a structural form. 

One may ask me a question how this will help me in suggesting a new geometric form 

for offshore structure. I can quote one simple example in a minute, and show you how it 

can be done. 
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Let us talk only about damping, there can be different sources; one can be material 

damping, one can be external source of damping, one can be an additional response 

control devices, as dampers. Suppose you understand that the hydrodynamic damping or 

the material damping or structures inherent damping is lesser. You can introduce an 

additional control device in the system, so that you can bring down the instantaneous 

response in less number of cycles. So, re-centering can be faster. The objective is not the 

response control; the objective is re centering can be faster. 

A classical example of this is a multiple articulators, classical example of this. Whereas, 

the buoyancy chamber is shifted in such a manner, that the re centering is brought faster. 

So, buoyancy chambers introduce additional damping, because of hydro dynamic effects, 

sloshing etcetera, because the variables submergence effect this cause additional 

damping and that brings the objectives. So, this is a design objective. So, all these 

inferences can be converted to an understanding of design.  

Similarly in case of triceratops, this is a new geometric form it is coming up for Ultra De 

Walters. People introduce these are buoyant legs, this is the deck, and people introduce 

Bolgenos in between them. So, whatever response the buoyant legs will have. Of course, 

the water level is somewhere here, the Bolgenos are above the water level, whatever 



response the buoyant legs will have, they will be absorbed by the joint, and it will have 

to be transferred to the deck. If the deck has some aerodynamic response it will be again 

absorbed with the joy now come back to the legs. So, introducing additional damping 

characteristic, fundamentally to bring the re centering capability more. So, the design is 

understood from dynamic behavior as a fundamental equation like this. 

Thank you. 


