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Welcome friends to the 17 lecture, on module 2, on the NPTEL course on Risk and 

reliability of offshore structures. 
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We are talking on lectures in module 2, which is focusing on reliability theory and 

structural reliability. Today, we will discuss lecture 17, in module 2, where we will 

continue with the application problem what we discussed in the last lecture, application 2 

as I continue. So, we are talking about the effect of the influence of the response of 

compliance system under, highly non-linear waves in the presence of earth quakes. So, 

the original p-m spectrum, which is a function of wind velocity, is a modified. So, the 

original Pierson Markowitz spectrum, which is a function of wind velocity, is modified 

as a function of modal frequency.  

Subsequently, it is further modified to accommodate as a function of significant wave 

height and the modal frequency. This was suggested by Michel 1999 which we discussed 



also in the last lecture I will write down the equation for continuity s eta eta omega 8.110 

power minus 3 by omega 5 exponential minus 1.25 omega M by omega to the power 4 

equation number 1. In this case g g square here, in this case g is acceleration due to 

gravity which is 9.0 meter per second square omega M is called the modal frequency. In 

this study, in general as advised by Mitchel; we have taken modal frequency as 0.46 

radius per second which amounts to 0.07 hertz. S eta is the power spectral density 

function of the wave height and wave frequency the wave elevation eta t is realized, as a 

discrete some of many sinusoidal functions. 
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Well doing so, vary the angular frequencies and random phase angles. So, eta t is given 

by, which we have seen in the last lecture as well this is going to be a summation discrete 

sum of various sinusoidal functions. So, we know that k i is a wave number, omega I is 

the discrete sampling frequencies, delta omega I is omega I minus omega I minus 1 

which will give me the difference n is a number of data points and phi I is a random 

phase angles. Now, interestingly the generated waved profile is designed have a peak and 

specific time t naught which is going to be distinctly high in comparison to other wave 

heights and therefore, it can be classified as distinctly high sea waves. We look at the 

figure which is shown on the screen. 
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One can see here, the top one shows the generated Pierson Markowitz spectrum, using 

the modified values given by Mitchel the corresponding wave height in terms of wave 

height time history is shown here if you take a blow up any specific wave height or sea 

surface elevation which you see from here you can explain the characteristics of this very 

easily by looking at this figure which is classified as distinctly high sea waves because 

one can see here the wave height and the specific value is phenomenally and 

comparatively very high with respect to the preceding and succeeding wave heights. So, 

one can simply say this is a typical distinctly high sea waves. So, the figure showed the 

Pierson Moskowitz spectrum and the sea surface elevation sample; at means x is equal to 

0. So, the location is at x is equal to 0 where the wave first interface with the structure. 
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In this case, it is going to be a here. One can see a magnified wave history sea surface 

elevation see on the screen here a magnified wave history one can see here by looking at 

this the wave generated can be easily seen as a continuous function of time near the 

chosen time interval the time interval chosen; in this case is t is equal to four seconds to t 

is equal to 14 seconds. In this time interval, in the specific time interval one can easily 

see it is become a continuous function of time it is also seen the generated wave has a 

concave front. 

Generated wave and a convex rear, which is a very classical identification of distinctly 

high sea waves, which can cause impact on the structure as given by Kamet in 1997, one 

can also see the specially varying high sea wave profile is the wave seen in the first mode 

point of TLP that is x is equal to 0 therefore, from that point onwards different phases of 

the same wave profile reaches different positions along the TLP as a wave passes away; 

that is how the discrete some of sinusoidal function as become a continuous function in 

terms of a wave which is causing a required impact on the structure which is distinctly 

high sea waves. Now, in the study example problem was the example structure taken 

considered is a tension leg platform. Kindly, look at the figure shown in the screen now. 
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This is an example TLP is considered for the study presently the TLP has got three 

column members designated as 1 2 and 3 and 3 pointing members designated as 3 4 5 

and 6 where which are located at the bottom and of course, the top is having the trust 

system where the top deck is assembled to the column members as seen the elevation, 

the water depth is marked as d the TLP in triangle as the dimensions in plan p b and p l 

plan along the breath and the plan along the length and thus the means level sea level of 

sea c g is taken as the mass center where the degree of freedom are marked.  

So, one can see here the initial pretension is about t naught and the water is about c g as 

marked here. Now, in the equation of motion of TLP under distinctly high sea waves is 

given by M x double dot plus c x dot plus k x is going to be f of x x dot x double dot 

because I am going to include the acceleration as well and of course, the time of t. M is 

the mass matrix of given system c is the damping matrix k is stiffness matrix and of 

course, f is the hydrodynamic force vector. The structural mass is assumed to be lump at 

specific degree of freedom points and therefore, it is going to be diagonal in nature 

because we all know when the structural mass lumped at the points where the degrees of 

freedom are marked or measured then the mass matrix will be diagonal. So, the mass 

matrix in this specific case is going to be like this. 
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These are essentially the lumped in mass at respective degrees of freedom where M 1 1 

M 2 2 and M 3 3 is the total mass of the flat form whereas M 4 4 M 5 5 and M 6 6 are 

actually total mass of movement of inertia about x y and z axis respectively. On the other 

hand, M 4 4 is going to be simply M r x square where as M 1 1 M 2 2 and M 3 3 can be 

said as M similarly M 5 5 will be M r y square and M 6 6 will be M r z square 

respectively. Interestingly the added mass term will also get now included in the mass 

matrix. So, we say plus M 1 1 that is going to be added mass which I am doing it here 

and M a 5 1 the added mass similarly because of the heat the displaced volume M a 3 3 

and M a 5 3 remaining all terms will just not been indicated here will be marked as 0.  

So, one can see here the additional mass matrix terms essentially arrays because of the 

variables (Refer Time: 16:00) effect on the given problem r x x or r x r y and r z are 

radius of gyration about the respective axis x y and z respectively M a 1 1 and M a 3 3 

are the added mass terms in the surge and heave degrees of freedom whereas M a 5 1 and 

M a 5 3 are the added mass movement of inertia due to the additional mass is surge and 

heave degrees of freedom respectively. The heave added mass on the TLP (Refer Time: 

16:36) is they can equivalent to the mass of the hemispherical volume of water. 
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So, the added mass a (Refer Time: 16:50) of freedom is actually taken equal to the mass 

of hemispherical volume of water one can equivalent to mass of hemispherical volume of 

water as suggested by Chakravarthi Hanna 1991 can see here from the mass matrix that 

the presence of half diagonal terms, indicates contribution of added mass due to high 

dynamic loading.  

So, now we are talking about the example problem where, the TLP is encountering the 

wave with front two columns in plain. So, triangular configuration in plain of course, it is 

got the top deck supported by the members and bottom contour, we solve now push and 

the stand using (Refer Time: 18:15) of course, the top deck has the same facilities as that 

of conventional hull where all systems will represent as expected in the given system of t 

l p. Now, interestingly in this particular equation of the study contribution added mass is 

taken up to the M s l which included along the force vector the stiffness matrix now 

which is indicated as k depends on the tether tension and its responds dependence. 



(Refer Slide Time: 18:50) 

 

As well dependence on tether tension and structural response, for a triangular TLP the 

stiffness matrix 6 6 and k 4 4 reaming all members are 0 k 5 1 remaining all members are 

0, in this case all members are 0. So, one can see here that heave degrees couple is 

almost all degrees of freedom there was three 1 1 to 3 6 all are present. So, heave is got a 

very strong coupling with all most all degrees of freedom it is very simple to understand 

that is concept in case if we have a TLP when you given a another motion to TLP the 

TLP actually sets an half sets on waves when it surgeons wave of course, because of the 

heave movement it is going to be half set.  

So, heave surgeon’s wave or any way coupled, because the variable some other effect 

there will be going to additional mass movement of inertia cause and that is going to 

cause a restoring movement in the pitch roll in all degrees of freedom therefore, heave is 

coupled almost with all degree of freedom here. So, it is why we very strong coupling 

with all degrees of freedom in a given system one can also see looking at the coefficients 

of a stiffness matrix one can easily see they are going to be tether tension dependent and 

response dependent one can see this details from my papers published and indicated in 

the NPTEL website. So, coefficients of stiffness matrix can be derived from the first 

principles k i j can be derived from the first principles. 
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One can easily see from the literature Chandrashekaran and Jain 2002 damping matrix c 

in this case is assumed to proportional to initial values of mass matrix and c plus matrix. 

So, c matrix is given by a rally modal combination of this which is a 0 M plus a 1 k i call 

this equation number two where a 0 and a one are essentially the stiffness the mass are 

the mass and stiffness proportional damping coefficients the damping matrix given here 

is interestingly orthogonal, because it permits as it permits modes to be uncoupled by the 

Eigen vectors undone Eigen value problems. The damping constants a 0 and a 1 

interestingly are chosen as fractions of critical damping at frequencies which are omega 

1 and omega 2. 
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So, one can solve the simultaneous equation write now a 0 and a one can be written like 

this twice zeta 2 omega 2 minus zeta 1 omega 1 by omega 2 square minus omega 2 

square where as a one is twice. Now omega 1 omega 2 zeta two omega 2 minus zeta 1 

omega 1 by omega 2 square minus omega. So, I call this equation number three. So, the 

damping coefficients zeta 1 and zeta 2 are taken a certain percentage of critical damping 

the corresponding frequencies omega 1 omega 2 are chosen such a manner. So, the two 

different frequencies are chosen out of 6.  

So, that the suitable mass and stiffness proportional damping can be used in the certain 

system. So, the damping attributed to a 0 k increases the increasing frequency whereas 

the damping attributed to a 0 k increases with increasing the frequency whereas, a 0 a 1 

M will decrease with increasing frequency. So, accordingly on has calculated the values 

of a zero and a 1. So, that when you substitute here as a 0 M and a one k they are 

compromised. So, this was of course, refer from Chopra 2003. 
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So, by taking damping a critical 0.005 here 5 percent of critical damping the coefficient a 

0 and a 1 are worked out or computed by solving this two simultaneous equations for 

surge and (Refer Time: 27:21) degrees of freedom that is omega 1 is related to surge and 

omega 2 is related to yaw degree of freedom.  

Then subsequently a free vibration analysis performed to find out the natural frequency 

of the plat form, which can be used here for our calculations therefore, the damping 

ratios can be obtained. It has been seen that the damping ratios maintained a reasonable 

value with all other modes. So, one was to check the damping ratios maintain reasonable 

values with all other modes the force vector f of t is given as f 1 f 6, and suppose 

equation number 4 where f will be the force in any expected degree of freedom the force 

degree of freedom is of course, surge and 6 0 freedom is of course, the yaw motion. 

The dynamic buoyant force is given by, which is also going to be the function of time it 

is for the equivalent t l ps of three by four rho x of t equation number 5. Wave forces are 

modal using modified Morison equation which is given by f of t is force for unit length 

pie d square by 4 rho c M u double dot plus or minus pie d square by 4 rho c M minus 

one of x double dot equation number 6 where x indicates the structural displacement 

velocity and acceleration of the structure u indicates the water particle kinematics.  
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So, one can see here in equation 6 u dot minus x dot in equation 6 u dot minus x dot is 

the relative velocity component is the instantaneous relative velocity component between 

the structure and the water particle, of course x dot and x double dot are the structural 

velocity acceleration respectively these are the diameter of the member of the cylinder, 

rho is a density of sea water c d c M or the diagonal initial coefficient which are used in 

the equation.  

The water particle kinematic u dot and v dot using the modified (Refer Time: 31:52) the 

force vector updated, at every time instead, for its response dependence and also to 

account for variable submerge. Now, as you can see from this equation it also depends 

on the response this of course, not known we got solving using iterative scheme of 

numerical procedure. So, therefore, solution to equation of motion becomes iterative 

becomes iterative and Neumann’s beta time integration method is used in the present 

step.  

Now interestingly the force vector has got two components compress of one. The 

hydrodynamic forces arising from distinctly high sea waves, as obtained from the 

modified p-m spectrum which I showed you earlier, in addition to that it, as also called 

what the varying tether tension which is caused by the vertical and horizontal (Refer 

Time: 34:19) excitation. When the t 0 or the tethers are actually anchored to sea bed 

when the sea bed is got vertical and horizontal assessment consideration the tension in 



the tether continuously varies which affects the stiffness coefficients therefore, the 

equation of motion is updated at every time instance because 2 force components stop 1 

is the hydrodynamic force arising from the distinctly high sea waves which we obtained 

from the modified p-m spectrum the second is of course, t 0 variations which causes in 

direct force on the system. Now, the tether tension variation which affects the stiffness 

coefficients is very simple. 
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The tether tension coefficients which is affecting or influencing the stiffness matrix 

coefficients is dynamic in nature, it varies with time, it needs to be updated, and is given 

by let us say the variation delta T is given by of course, the ratio of x of t minus x g t the 

ground displacement. Let us call this as equation number 7 where x of t is the 

instantaneous response vector of the TLP and x g of t is actually x 1 g of t 0 I only 

looking the horizontal and vertical (Refer Time: 36:35) excitation we assume that 

horizontal excitation happens only in such degree in else where it is not there remaining 

all other degrees remains 0.  

X 1 of g is of course, the horizontal ground displacement in surge degree of freedom and 

of course, x three of g is the vertical ground displacement in heave degree respectively. 

So, now, we are going to add both the forces that are arising from the distinctly high sea 

waves the hydrodynamic force and the indirect force caused by the change in tether 

tension given by equation 7 as delta T because change in tether tension affects the 



stiffness coefficients which of course, is a part of the equation of motion, which we will 

see and discuss in the next lecture. 

Thank you very much. 


