Offshore structures under special loads including Fire resistance Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Module – 03 Fire Resistance Lecture – 53 Design Approach- II

Friends, we will continue to discuss the design approach for fire resistant design as applicable to offshore structures in lecture 53, in module 3 titled fire resistant design.

(Refer Slide Time: 00:30)

File Edit View Inset Actions Tools Help	Note2 - Windows Journal	- 8
	Pater - 1-1-2-9-1 * -	
B /		
Non Tite		
	Fix Unit State	
	- based on the standard fire so furnace test	
	- identifies failure criteria	
	1) Element under test shall have sufficient shripts (load comp	ing
	Capacity to resist the applied load, over the test durate	
	2) temperature of the unexposed surface should be low enorth n	
	to caux inhatian of combustion of materials	
	3) There shall be no possibility of flam reaching the	
1	unexposed surface of the member torough only weakness	c
	- love) interity of the shuller	
C. S.	• *	
NPTEL		1/1

So, as continuation we know that fire limit state is based on the standard fire or of furnace test. So, this actually identifies different failure scenarios or failure criteria; one element under test should have sufficient strength or what we call as load carrying capacity to resist the applied load over the test duration, temperature of the unexposed surface should be low enough not to cause irritation, initiation of combustion of materials. Thirdly, there should be no possibility of flame reaching the unexposed surface of the member through any weakness; the weakness can be loss of integrity of the structure, faulty construction, excessive deformation etcetera.

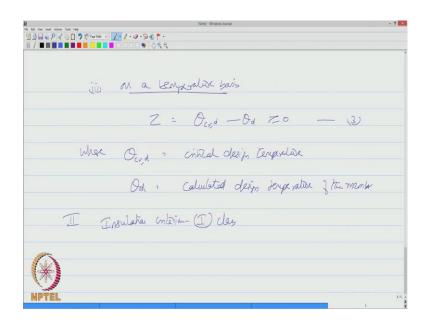
(Refer Slide Time: 03:23)

- faulty carybucker	
- exceesive deformation et	
conterior are classified as	
load logally - (L) class]	
Insulation apail - (I) class	
	conterio an Classified of load (gpailty - (L) class Insulation (gpailty - (I) class // Insulation (gpailty - (E) class //

Now, these criteria are classified as one the load capacity which is identified as L class; second the insulation capacity identified as I class and thirdly the integrity capacity which is identified as E class, let us see these capacity or load classes separately one by one in detail.

(Refer Slide Time: 04:42)

File Edit View Inset Actions Tools Help	Note2 - Windows Journal - 🖉 💌
	9 (Fronter - 1. 2 - 9 - 9 - 1 + -
U	D load-bearing capacity (marina (L)
	This can be expressed in 3 ways:
	() a time sale
	$Z = E_{\text{fid}} - E_{\text{fixed}} = 20 - (1)$
V	where the columbia time to failur
100 C	thingd. required time to failur a ted - equivalent time
(*)	
NPTEL	ia.


Let us start with the load bearing capacity criteria, this can be expressed in 3 ways namely on a time scale that is Z is equal to t f i d minus t f i required should be greater than or equal to 0, where t f i d is the calculated time to failure, t f i required is the required time to failure, which will be approximately equal to t e comma d which is called equivalent time.

(Refer Slide Time: 06:23)

الله المركز ا	×
99889/3019 @™™ ////**98 * 8/1	
	*
is based an strength	
lu para an propri	
Z = Rfi,d - Efi,d Zo - (2)	
When Rfid = load resistance	
Efid = load effect	
Eng · · · ·	
please note that both are Reprinted with switcher partial	
sayity factor, over The required period } time	
- accounts for the unustantic lemon is	
- acams for the warden portion is	-
gimatry two values	
C. C	
NPTEL	14 × 40

So, one can estimate the capacity based on the time scale, alternatively one can estimate also based on strength Z is R f I, d minus E f I, d which should be greater than 0; where R f I, d is the load resistance and E f I, d is the load effect. Please note that both are estimated with suitable partial safety factors over the required period of time, which accounts for the uncertainties or errors in estimating the values.

(Refer Slide Time: 07:59)

The third could be on a temperature basis. So, Z is theta c r d minus theta d, which should be greater than 0; where theta c r, d is the critical design temperature and theta d is the calculated design temperature of the member. The second criteria could be insulation criteria which is I class.

(Refer Slide Time: 09:04)

B.	Note2 - Windows Journal	- 8 ×
File fait Vers hand Action Tools Holp Data & P & D & P & P & P & P & P & P & P & P	· · · · · · · · · · · · · · · · · · ·	
B/ BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB		
		^
In the	Insulation interior	
-	Z= Ocr,d - Od ZO (4)	
where O.	temperature, defined as they arthe surface	
	I the member, which is not equiled to fix	
Â		
NPTEL		6.6 -
		4 ¥

In the insulation criteria Z can be expressed as theta c r, d minus theta d greater than 0 where theta is the temperature defined as those on the surface of the member, which is not exposed to fire.

(Refer Slide Time: 09:57)

at Ver hert Adam Toda Verg
9 4 2 7 € /= m - Z / - 9 - 9 € * - / ■ ■ ■ ■ = = = Z / - 9 - 9 € * -
Rohmahing the partial safety factor
Marte- Garlo zimulater
2) metody First-ader reliasility andyrs
1 170
In Master Galo Bindation
effect 2 random variation of all paraneted are to
be considered
- their distribution of outcomes of the
simulation is votal
- This is helpfy to arren the gelship in palmu + parameters
is african the partial safety frich
- I is not direct approach
NPTEL III

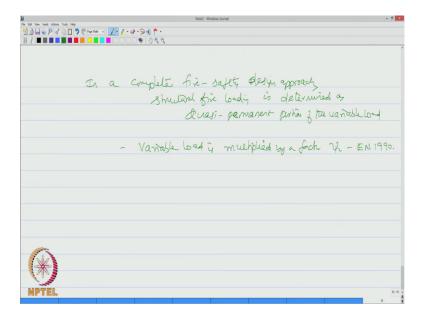
Now, the question comes how will you estimate the partial safety factors? Estimate of partial safety factors to account for uncertainties, in estimating the fire load as well as strength at elevated temperature needs to be addressed because they are very complex phenomena. There are two ways by which we can do this: one is by a Monte-Carlo simulation, the other is by First-order reliability analysis.

In Monte-Carlo simulation the effect of random variable are random variations of all parameters are to be considered. In fact, the distribution as outcomes of the simulation is vital, this is helpful this method is helpful to assess the relative importance of parameters in estimating the partial safety factor it is not a direct approach.

(Refer Slide Time: 12:39)

i) First- order reliabilit approved une mean & standard deviation of the lemit state function (3) Shini kayan charophopotem. 2016. Reliability L Risk amenut & offichar shelling, CRC oren plinde NPTEL COURSE filled Reliablet of Strange shutises, olega Eyz disupline IIGMady

Whereas, the first order reliability approach uses mean and standard deviation of the limit state function Z. One can know more about this in the book titled reliability and risk assessment of offshore structures authored by me and published by CRC press Florida, one can also look into an NPTEL course titled reliability of offshore structures offered by ocean engineering discipline at IIT madras.


So, please look into these two references in detail to know more about the first order reliability approach as applicable to conventional design procedures.

(Refer Slide Time: 14:29)

Note2-Windows Journal	- 0 ×
DAREP & D Brown - V-1.9.9. C.	
In partnular, under the fix load situation	
both the performance level required	
and perfervance (ere) caludated	
Will be a non-lensar, multivariable function	
- Estimate } partial safety factor for five winnestete desig	
is assumed based as	
- CUMMAN approach on good by experime	
NPTEL	3/5 v

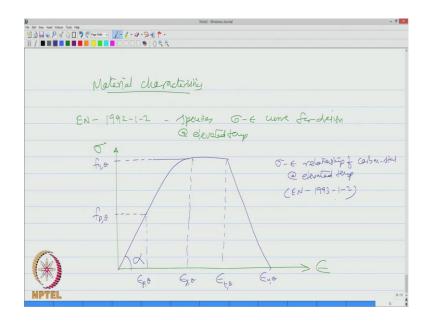
In particular, under the fire load situation both the performance level required and the performance level calculated will be non-linear multi variable functions therefore, in general estimate of partial safety factor for fire limit state design is assumed based on common approach as driven or goes by experience.

(Refer Slide Time: 16:06)

To be very specific in a complete fire safety design approach, structural fire loading is determined as Quasi-permanent portion of the variable, that is a variable load is multiplied by a factor psi 2 based on Euro code 1990.

(Refer Slide Time: 17:19)

Note2-Windows Journal Note2-Windows Journal	8 ×
9984 P/90 7000 - 7.1.0.900 - 8	
Codal provision	
Coda provisios	
EN-1991-1-2 gllas the load effect to be restited is	
Cart bix	
- treated as propolition of the ambient long	
ELLED. EL O	
Efid = nfid Ed 0	
ullark El. design effect@ ambient desponetice	
Mart - reductor facts (06 to 07, type) cushictica)	
NPTEL	11/11


Now, let us see the codal provisions EN-1991 allows the load effect to be resisted in case of fire. This is treated as proportion of the ambient load E f i, d is taken as f i, d into E d where E d is the design effect at ambient temperature and eta f i d is reduction factor taken as 0.6 to 0.7 depending upon the type of construction being used.

(Refer Slide Time: 19:04)

File Edit View Inset Actions Tools He	Note2 - Windows Journal - 0
	9 (° horiton → 1/+ 1/+ 1/+ 1/+ 1/+ 1/+ + + + + + + + +
	×
	kindly note they
	partial safety faster, used is fire-resistant sectors
	are generally
	1 OWER
	then their specified for other accident dange
	Cary is the derin code
A	
NPTEL	12.6

So, kindly note that partial safety factor used in fire resistant sections are generally lower than that specified for other accidental loads in the design code.

(Refer Slide Time: 20:05)

Now, let us look at the material characteristics. So, EN-1992-1-2 - specifies stress strain curve for design at elevated temperatures, let us try to look at this curve. So, this is my strain value my stress value, the typical curve looks like this and drops off. So, this is alpha, this value is what we call as f p theta and this value is E p theta and this value is specifically E y theta and this is of course, f y theta and this is strain t theta and this is strain u theta, typical stress strain relationship of carbon steel at elevated temperature as described by EN-1993-1-2.

(Refer Slide Time: 22:39)

File Edit View Inset Actions Tools Help	Note2 - Windows Journal	- 5. 🗙
908 P / 00	9 Chanter 1. 1. 9. 9 C * .	
B /		
	fy, a - Effective yield sheapts	
	fre - propational limit	
	Eq.0 = band = slope of the linear Glashie maye	
	Eps: Strain @ the propulsional losit	
	Eye . Yield Shows	
	Etro - Remining Showing for yield shreyts	
	Eus . Whimate strain	
and a		
(She		
NPTEL		и/м
		я

In this case f y theta is what we call as effective yield strength, f p theta is called the proportional limit, E a theta is tan alpha which is slope of the linear elastic range, epsilon p theta is the strain at the proportional limit, epsilon y theta is the yield strain, epsilon t theta is the limiting strength for yield strength and epsilon u theta is the ultimate strain.

(Refer Slide Time: 24:07)

Note2 - Windows Journal	- 0 ×
He fat Yee heet Adam Teat Hig So an So P 4 a 1 7 € Portan → V + 1 - 9 + 9 € *	
	~
6- E paranders is dude some allowing for creap	
for different strain range, stress value a tue corresponding	
forgert modulus - can be seen frag	
EN- 1993-1-2	
for mox detaus	
Et & = 0:15	
~	
and a second	
NDTEI	15/15
	15

Now, the strain parameters including the stress strain parameters, includes some allowance for creap and for different strain ranges the stress value and the corresponding tangent modulus can be seen from the euro code for more details, for understanding epsilon y theta is limited to 0.02 and epsilon t theta is limited to 0.15, these are the upper limits which are bounding the design for steel or material strain at elevated temperatures.

(Refer Slide Time: 25:32)

File Edit View Inset Actions Tools Help	Note2 - Windows Journal – 0 🔹
	Ellomation, stainley star,
L	contraining planners start,
	- Celtais discrepancies
	, lack a district yild point even @
	amble it renjameter
	a total is matrial abraute.
	2) Conjidenasle isman- nankny characterit: nead to be is material strengts. Considered
	- 0:2% prest-stress to compute tangent modules
	and also to far/asses the
100 C	wherease shereft
(se)	0007-1
NPTEL	8/8
	5

Alternatively people have used stainless steel also as a material for fire resistance, but stainless steel has certain discrepancies: one it lacks a distinct yield point even at room mean temperature, two it has of course, considerable strain hardening characteristics which need to be accounted for in the material characteristics in the material strength. So, in such cases as we all know 0.2 percent proof stress is used to compute the tangent modulus and also to fix or asses the ultimate strengths.

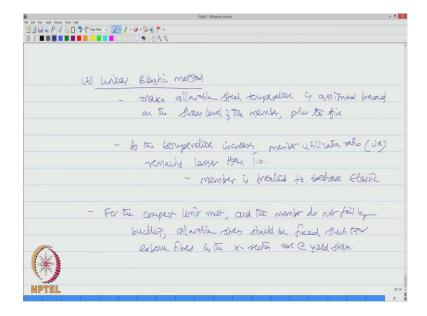
(Refer Slide Time: 27:25)

Note? - Windows Isunal Te Life Yee Inst. Hele	Χ.
an lat two men administration hope ⓐ ⓑ la 𝔅 𝒫 𝔄 □ □ ♥ ♡ Λραπα ·	
B/	
Design for fire-resistance (Ret: API-RP-2A claux C18.6.3)	*
(aux (18.6.1)	
- Fire is meated as a load widetas	
- can be approached by 3 mg	
1) Zone mettod	
2) Linear elastic metor	
3) Blashi-poshi medsa.	
()	
NPTEL 177	* ** *

Finally if you talk about the design approach specifically for fire resistance, one can also refer to API-RP-2A to a specific clause 18.6.3 C 18.6.3. In this class fire is treated as a load condition and can be approached by 3 ways: one a zone method, two linear elastic methods and three elastic plastic methods.

(Refer Slide Time: 28:42)

U Zare metsod - Maxw allarable teruporalar is ansigned is the Zare for the state of the state
() Zare metgod - maxim allarable derupprubbic is ansigned is the
- maxin allarable serviceation is ansigned in the
- maxin allarable serviceation is ansigned in the
- maxin allarable serviceation is ansigned in the
Zone of the steel ments
- This that no referra to the 5 levely is the
member, prize to fix
- maxin allowable serverative is fixed based as
[tu sted properties @ yield]
- Breyts reduction factor of 0.6.
- fundamental assumption
- Member usilization ratio uses busic allowable
Stren, which is considered to be unchanged
for fix load
V.


In zone method maximum allowable temperature is assigned in the zone of the steel member, this has no reference to the stress levels in the member prior to fire. So, the maximum allowable temperature is fixed based on the steel properties at yield, with a strength reduction factor of 0.6. This method has a fundamental assumption; the fundamental assumption is that member utilization ratio uses the basis allowable stress, which is considered to be unchanged for fire.

(Refer Slide Time: 31:15)

File Edit View Inset Actions Too	Note2 - Windows Inumal - 0
90000P1	0 9 Cronson - 1. 2. 9 - 9 - 2 * ·
B /	
	If the allowable shrees is creased to yilled value
	then yield show will be reduced by a factor
	st 0.6
	- limitation of Zone metod
	1) The abunption, used is zone method is relied when a
	Man-linear 5- & chandladines is appropriately
	lineanized
	- suchtant yield skyrt reductor fact
1 miles	mobiles The reduction is Modular' & Elashit
	mohler The reduction is Modulan' of Electricity
NOTEI	8
our 8 lists	

Therefore if the allowable stress is increased to the yield value, then yield stress will be reduced by a factor of 0.6, there are some limitations of zone method: one the assumption used in zone method is valid when a non liner stress strain characteristic is appropriately linearized such that the yield strength reduction factor matches the reduction in modulus of elasticity also.

(Refer Slide Time: 33:18)

The second method is linear elastic method; in this method maximum allowable steel temperature is assigned based on the stress level of the member prior to fire therefore, as

the temperature increases, member utilization ratio which is UR remains lesser than 1; that is the member is treated to behave elastic. For the compact limit met and the members do not fail by buckling, the allowable stress should be fixed such that extreme fibers in the cross section are at yield stress.

(Refer Slide Time: 35:43)

In Edit View Inset Actions Tools Help	- 0
〕 🖻 🔜 🍳 🖓 🕂 📋 🍠 🥙 Paritan → 🗾 🖊 + 🛷 + 📯 🐔 🏞 +	
- This yills value comparato	to a very yield shar
volue @ the elevated	
Venue Ce ine Devenue	Conference Directions
	1) (elais line control
- This metsod may not be applica	the the spinal with growing
t32m 012%.	
- @ the stage red	uctar is mounter of Elegit
all area i predu	de h yield shreyts
With Excled I cond	by a fina sweys
1 × 1	
All I	
NOTEL	
NFIEL	

Now, this yield stress value corresponds to the average yield stress value at the elevated temperature of the member. This method may not be applicable for strain limit greater than 0.2 percent. Because at this stage reduction in modulus of elasticity will exceed reduction in yield strength and there will be no one to one correspondence, the correspondences need to be there because this is an elastic design.

(Refer Slide Time: 37:16)

låt Væv Inset Actions Tools Help	Note2-Windows Journal -
BROPAD PC.	
1.	
in	Electri-plashe metod
(iii)	Daard prote may)
	- Maxin allavable temperatare is the spectmenter
	is assigned based on the 6 und is the
	member price to fix
	- A non-liter analysi is performed to verily
	that the smultie will not collept @
	clerated temperature
	and will revein provideable
SIN .	
(**)	
NOTEI	
ar anan	

The third case is elastic plastic design; in this method maximum allowable temperature in the steel member is assigned; based on the stress level in the member prior to fire, but a non liner analysis is performed to verify that the structure will not collapse at elevated temperature and will remain serviceable.

(Refer Slide Time: 38:43)

Ja Contraction of the second s	Note2 - Windows Journal - 0	Χ.
File Edit View Incent Actions Tools Help		
	(⁰ hg/han - 1/- 1 - 9 - 9 - 1 + -	
B / B B B B B		
		*
	Man-Wear 6- & relativeship - is linearized	
	. This is adhedized by choosing a representative rather of	
	Strain (0.27. value is used)	
	hit that was and to the low and	
	- but this has serious RMY, when the temp exceeds	
	4n°c	
	4000	
	le cause reduction is yield should be	
	be cause reaction is give a single a	
	Modulus of Elasticity are	
	Moduling & EGAID	
	not comparable @ 740°C	
	in companya a 7400C	
-		
1		
NOTEI		3/25 ¥
NF 166		*

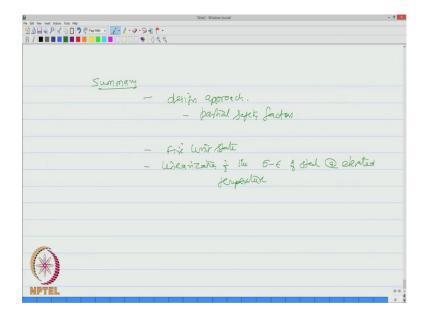
So, interestingly a non-linear stress strain relationship is linearized, this is achieved by choosing a representative value of strain typically 0.2 percent value is used, but this has serious error when the temperature exceeds 400 degree celsius because reduction in the

yield strength and modulus of elasticity are not comparable at temperature exceeding 400 degree.

(Refer Slide Time: 40:17)

000 F09 0 7 C ho Ha - 1. 2. 9 - 9 - 9 - 9 Metod 1 Unearization can be dave a 6- E @ 550° MEBUR. metsod A: Bots yidd LE are linearized chorus @ 1-47. Shain cherts ... yild streyts @ 55 land, reduces by 0.60, but E reduces by 0.09 - Mymatch Yw (Gy, E) @ His values @ Hented toy 1.4.1. E

So, linearization can be done by two ways: let say method A and method B. So, the typical stress strain curve looks like this, this is test and curve at elevated temperature. So, this is percentage strain and this is the strength reduction factor starting from 0.1, 0.2 0.3, 0.4, 0.5, 0.6, 0.7.


Typically choice b the value is here, 0.5, 1.0, 1.5, 2.0 and 2.5; typically choice B goes till 0.6 and then remains horizontal whereas, choice A goes to 1.3 and then goes horizontal whereas, the real behavior follows up to 0.4 the same modulus, then deviated till 0.5 then goes ahead and then crosses, this is the stress strain relationship at 550 degree celsius. Let us quickly see what is the choice A or method A of seven both yield value and modulus of elasticity are linearized at 1.4 percent strain. So, this value is close to about 1.4, but yield strength at this level reduces by factor of 0.6, but Young's modulus reduces by 0.09 that is 0.6, 0.2 by 1.4 therefore, there is a mismatch between Young's modulus and yield strength, but at this value of 1.4 percent strength.

(Refer Slide Time: 44:20)

Fit Edit View Inset Actions Tools Help	Note2 - Windows Journal	- 0, ×
10000 P 100 7	Erenn V. 1. 9. 9 t * .	
B /		
me	10ts	
	yield strengts is linearized @ 1.4% strain	
	E y linearnier @ 0127/ strain	
	- reduction of yield sheepes I E ar all half main tain	ad
	@ 0.4	
	- load conduter that governy the design will not	
	be appeted	
	n grade	
15 -	Un earization technique proporce by bots method and conservative	
NPTEL		8/8
		25

If you look at method B, yield strength is linearized at 1.4 percent strain and Young's modulus is linearized at 0.2 percent strain. So, reduction of yield strength and Young's modulus are artificially maintained at 0.6. So, that will load condition that governs the design will not be affected, but there is a common note between both the methods linearization technique proposed by both methods are conservative, this you can easily see when you compare it with the actual system behavior shown in green color in the curve.

(Refer Slide Time: 46:15)

So, friends in this lecture we discussed about the design approach. We discussed about the partial safety factors that account for uncertainties, we also discussed about the fire limit state, we discussed about the linearization of the stress strain behavior of steel at elevated temperature and we realized that the governing equations used in compromising the Young's modulus reduction and yield strength reduction by appropriating choosing either method A or method B, give you conservative statements when you compare this with the real stress strain behavior relationship of steel at 550 degree centigrade. So, the partial safety factors account for these kinds of uncertainties of material characteristics of elevated temperatures, which is used and recommended in fire limit state design procedure in Euro codes.

Thank you very much.