Computer Methods of Analysis of Offshore Structures Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Module - 01 Lecture - 01 Introduction to Structural Analysis (Part - 2)

(Refer Slide Time: 00:17)

(Refer Slide Time: 00:21)

le Edit View Insert Actions Tools Help /・』・④・⑤・⑧ B 』 ■■■	Mod01 - Lec01, ntroduction to Structural Analysis (Part – 2)	Prof. Srinivasan Chandrasekaran
Note Title	12	10/16/2017
Kine	matic indeterninary	20 Maria
		V 1 H Landater
No: f ini	legendent companents of (Joint displacements)	bots marsarma
and -	retriand) (Stiffness)	
		-
wits -	respect to a specified coordinate axis	
	which is repuired to describe response	Zette system
Leve	ler any abitrary load	
du bi	mit is the index to constant	Landard H.
- Sman	must be restrained is order to concre (Grouppent) un
1 August	5 all Joint displacements restranced - formalistican	in the c
NPTEL - Spricher Wi	2 all some and allowed saluated - from more	8/13
	8	

Then let us see; what is kinematic indeterminacy, because there are two indeterminacies.

(Refer Slide Time: 00:31)

it View Insert Actions Tools Help	Mod01 - Lec01, ntroduction to Structural Analysis (Part - 2)	Prof. Srinivásan Chandrasekarat
lote Title		10/16/2017
Static indeter	iminary => Flexibility	
	flexibility (for example, shear fore, axis	
which may be	eitar erland og island that m bandern the Structural system it	just be released)
in order to	transferry the structural system into	
	a state /staticelly-determinate	System
	Stati colly - determinate	-(0.
De provident a indet		
Depre-iz-indet	pepce-J- stati indetermina	in i defined as
the no: f rele	and actions, which specifies the	no: f special
FICL		

(Refer Slide Time: 00:34)

e Edit View Insert Actions Tools Help	Mod01 - Loc01, ntroduction to Structural Analysis (Part - 2)	
<u>∠・</u> ∠・ <i>∢</i> ・⋟⋞ » В / ∎∎∎∎		
Note Title		10/16/2017
	Indeterminary	
Po	to the metsuds, commenciate the formulation .	around this (DYM)
(s		-
(2) Ty	per of indeterminacy	
0.0		
	(1) Stahi indeterminacy	
V		
	22 kinemahi isdetomunay	
	/	
<i>•</i>		
(*)		
NPTEL		10 C
		5/13

One is static other is kinematic. Let see; what is kinematic indeterminacy. This refers to the number of independent components of joint displacements. It can be both translational and rotational. Now we can get a keyword very easily I am talking about displacements; displacement is related to stiffness in the formulation I can recollect that.

So, it is a number of independent components of joint displacements; the moment I say displacement it should have a coordinate system with respect to a specified coordinate

system or coordinate axis, which is required to describe response of the system under any arbitrary loads.

So friends, we can see kinematic indeterminacy which is associated with stiffness method of formulation problem is more or less trying to converge to a generic solution. These problem formulations need to identify the number of independent displacement components which will be invoked under the external forces which are acting on the system, which can be of any nature. So, stiffness method is slightly and promisingly converging towards a generic type of problem formulation. There is one important statement which we want to make in kinematic indeterminacy. It is important to note that structure must be restrained in order to convert or let say transform the system into kinematically determinate structure.

In fact friends, they did this in the earlier method also. You see in static indeterminacy which is associated with flexibility approach you are transforming the system into statically determinate system. Similarly, in this case you are transforming the system into kinematically determinate structure. So, kinematic indeterminacy is associated with stiffness approach, whereas static indeterminacy is associated with flexibility approach.

(Refer Slide Time: 04:40)

Note Title		1		10/16/2017
SU Flex	libility method v		Fode De	
	ffners metsod	15015 me	powerful vertul	
E Si	they metsod	equality	powerful	
1		-	useonic	
Flexibility me toods		(stiffners met	sod)	
TRAISING TRAIS		Seill and Links		
Unknowns: (ACTIONS	Y unk	name: Displace	CEMENTS /	
(shear fore		(brenslational	rotational)	
		5	0	
Bendiny ma				
Bendiny ma				
Bendiy ma				

Flexibility and stiffness are two different methods of problem formulation which are used in computer methods.

Having said this, let us add one more statement saying that structure with all joint displacements restrained is the formulation.

(Refer Slide Time: 05:13)

it View Insert Actions Tool		
1.4.94 "		_
lote Title	10/162	017
	Depree g - kinemati isdeterminany	
	in the second to the light wat	
	No: f unrestrained composers of the Joint displacements	
	(1) to able 1, 10 while 1)	
	(bots ritational L translational)	
	(a) It and the factor	
Je	re-z-binonatic is determinary	
	Specifies No: + independent Gruations that must be	
	white intermy of unrephained displayments of the system is to be analyzed using STIFFNESS Approaches	
	where are any fundiminal automation of the system of	
2	To be analyzed using STIFFNESS ATAPROTON	
*)		
PTEL	, I	1
		,

Having said this, let us now define; what is degree of kinematic indeterminacy. It is actually the number of unrestrained components of the joint displacements. It can be both rotational and translational. Therefore, friends it is important to know that degree of kinematic indeterminacy specifies the number of independent equations that must be written in terms of; what are the unknowns in this case- unrestrained displacements unrestrained displacements, if the system is to be analyzed using stiffness approach.

(Refer Slide Time: 07:19)

Note Title	10/16/2017
flexibility approad	stiffness approach
- static in determinary	kinemahi üdeterminany
- Worms are action	when an Joint displacences - rotational
- shear fore - Arcial form - Bri	- baybtiaul
- formulation Converte the	- formilation convers the system ist
Sylten iste Statically- determinate shutter	kinemphishly determinate
PIEL	

So, friends let us try to quickly summarize flexibility approach, stiffness approach. Both are two methods of problem formulation and solution. This deals with static indeterminacy, these deals with kinematic indeterminacy. To be very specific here unknowns are actions; example shear force, axial force, bending moment etcetera. Here unknowns are joint displacements; example rotational, translational, displacements. Here the formulation converts the structural system into statically determinate structure. Here the problem formulation converts the system into kinematically determinate structure.

So, one is focused on static determinacy, other is focused on kinematic indeterminacy. Stiffness and flexibility approaches are two different methods of formulating the problem which of course helps you to solve the problem as well.

(Refer Slide Time: 09:43)

të Title		10/16/2017
	Summary	
	0	
1	Bots Stati and kinemati is deter any structural system are	minaling of
	any structural system are	
	INDICATORS	
	of the anount / exten	+ 1 Computation
	effort repired to analyze the	inclused
	sylten citar usin Alexibili en Stoffners	in approvals
	es Stormens	approach
2		
*)		(

Now, let us make quickly a summary. Both static and kinematic indeterminacies of any structural system are indicators. They indicate what? Indicators of the amount or extent of computational effort required to analyze the structural system either using flexibility approach or stiffness approach.

(Refer Slide Time: 11:22)

dit View Insert Actions Tools Help	Mod01 - Lec01, ntroduction to Structural Analysis (Part - 2)	Prof. Srinivasan Chandrasekara
· <u>/</u> · 9 · 9 · B / B /		
Note Title	flexibility	10/16/2017
	shictural analyses - flexibility	
	Stoffnes	
	Bots the metsods - useful - pewerful numeri	
	- powerful numeri	aly
		0
_	- unknows - released to convert the	. Suctural
	- unknaus - released to convert the system into stehally (as kiner dotomisate system	natically)
	determinate system	/
	- standard Gr can be used to - system under applied loady	the lu
	system under applied loady	
IPTEL	11 _ 3	
		12
		12

So friends, it is clear that structural analysis can be carried by two methods: flexibility approach or stiffness method or stiffness approach. Both the methods are equally useful and powerful numerically. One of the methods have superiority over the other only in terms of problem formulation which we will discuss subsequently in other lectures. So, the unknowns are released to convert the structural system into statically or kinematically determinate system; so that the standard equations can be used to solve the system under applied loads.

(Refer Slide Time: 13:01)

View Insert Actions Tools Help	Mod01 - Lec01, ntroduction to Structural Analysis (Part - 2)	Prof. Srinivasan Chandrasek
<u>∕</u> ••>• B / ■■■■		
lote Title		10/16/2017
	Module 1	
	1 (logual)	
	Lecture 1 : Introduction to	01 5 -1
		Shucheray
	Analys 6	
, sł		
Step :	Formulation of the mathematical model	
(2) model	1: classical structural analysis	
(1) statically determinate atrustical model	
		4
<u>م</u>) should all and the states of the	
*)		
PTEL		

So friends in this lecture we started to just introduce the computer analysis, applied to structural analysis of offshore structures, we discussed about the formulation of the mathematical model.

(Refer Slide Time: 13:14)

fit View Insert Actions Tools Help	Mod01 - Lec01, ntroduction to Structural Analysis (Part - 2)	
· 1 • • • 9 • 8 / 🔳 🔳 🛯		
New Tale		10/12/2017
Note Title		10/16/2017
6 80	olve "statically Iphelerminate Shuctural m	dali j
	it is very inprhant to formulate the	model
) model should be restrained to be solve	
	model should be regtrained to be solve out by using standard i statics alone	episcias f
	Statics dure	
	· · · · · · · · · · · · · · · · · · ·	
This car	be done, by grouping the formation	
	3 metsods - to group the matternotic	el a lat
	I meison - to group the maintain	al mans
0		
*)		
IPTEL		
		2/

We explained what should actually been done to the model to solve the problem, what are different methods namely flexibility and stiffness method, what are the unknowns in both the methods, what are the basic assumptions which are actually idealized in solving the problem by both the methods.

(Refer Slide Time: 13:30)

Edit View Insert Action		
· 1 · 0 · 94	» B / ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■	
Note Title		10/16/2017
	Basic assumptions (both its metsod)	
(1)	Linear relationship exist between applied load and resulting displacement of the souther	the
	regulity displacement of the shelf	
	- making principle of superposition value	
(2)	Material of the shutter must day Hook's law - material must not be should bego	
	- material muse not be sherred bayo	nd
	its plashi limit	
	chebi	
(3)	Equations of Gran shall be developed using the generally) the	undeflected
	r model	
(*)	- Charge in geometry, caused by the imposed negliste (compared to mipinal geometry)	oods y
NOTEL	nedicle (impared to mipinal geometry)	
_	4	

Each assumption has some statement which is very important to apply for the analysis.

Then we discussed about indeterminacy. We spoke about two types of indeterminacy static and kinematic. Static aligns itself to flexibility approach, kinematic aligns itself to stiffness approach in which the unknowns are independent displacement components, whereas in earlier case they were the force or the action components. Both methods can be compared by the table showed in the screen. And we can now aim or objective to convert the given system either to statically determinate structure or kinematically determinate structure.

Both methods actually have unknowns which are indicators to know or to realize the extent of computational effort what you want to make to solve the problem. So, we must converge to a specific method which is easy to program in the digital computer and also we can minimize the computational effort and maximize the solution efficiency in the problem formulation stage itself which will discuss in the subsequent lectures.

I hope in introduction lecture, it is interesting for you in the first module and you will find it more cumbersome and convenient, in the same time to follow my algorithm in this. I wish to state very interesting reference which you need to follow, which is very helpful for this specific course to be further interesting.

(Refer Slide Time: 15:36)

So friends, if you have an access to this book please use this reference material as well along with the list of reference given in the NPTEL website. Fred W. Beaufait, William H. Rowan Junior, Peter G. Hoodlay, and Robert M. Hackett: 1970 Computer Methods of Structural Analysis which is Prentice Hall Publication New Jersey.

This is one of the interesting references which I could suggest you to go through, along with a list of references and text books given in the NPTEL website of this specific course.

Thank you very much.