Computer Methods of Analysis of Offshore Structures Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Module - 01 Lecture – 16 Planar non-orthogonal frame using computer code

(Refer Slide Time: 00:16)

(Refer Slide Time: 00:22)

Exa	nple <u>2:</u>
	tiffnass matrix mathod
4 D	CALIFOR BACKAR BACKAR
clc.	
cle	it;
n =	3: % number of members
I =	[2.208-3 3.1258-3 2.208-3]; &Moment of inertia in m4
L -	[4 6 4.472]; % length in m
A =	[0.135 0.15 0.135]; % Area in m2
the	a= [90 0 -63.435]; % angle in degrees
uu ·	6; % Number of unrestrained degrees of freedom
ur	er a Number of restrained degrees of Ireedom
uui	= [1 Z J 4 5 6] 5 Global labels of unrestrained do
11.	- [/ 0 / 0 / 11 / 1 / 1 / 1 / 1 / 1 / 1 / 1
12	(1.2.4.6.5), s Global labels for memory 2
13	[2 10 6 12 5 11]; 4 Global Labels for member 3
1=	11 12: 131:
dof	= uu + ur; & Degrees of freedom
Kto	al = zeros (dof);
Tt1	= zeros (6); % Transformation matrix for member 1
Tt2	 zeros (6); % Transformation matrix for member 2
Tt3	= zeros (6); & Transformation matrix for member 3
fem.	= [0: 0: 0: 0: 0] % Local Fixed and moments of member 1
fen.	= [0: 0: 0: 0: 0: 0] % Local Fixed end moments of member 2
ren.	[0: 0: 0: 0: 0] % Local Fixed end moments of memoer 3
_	
-	
-	

Start with the program. So, number of members are 3 number of members are 3 let us input the I value.

(Refer Slide Time: 00:36)

The I value you know 2.28; 3.125 and 2.28 in meter to the power 4 let us do that 2.28 3.125; 2.28, let us input the length, let us input the area, let us get theta unrestrained degrees are 6 in number you can see that unrestrained degrees are 6 in number, they are green in number and remaining 6 are restrained degrees.

So, 6 in number and 6 in number the global labels of L 1, L 2, L 3, you can see here 7, 1, 9, 4, 8, 3; 7, 1, 9, 4, 8, 3 and so on, then I can find the transformation matrix; you can find the rotational stiffness.

(Refer Slide Time: 01:25)

View Insert	Actions Tools Help	Mod-1 Lec-16- Planar, Non-Orthogonal Using Computer Code (Part – 2)	
1-9-	≫- ₹ × B I ■ ■ ■ ■		
- 11 :	stiffness matrix 6 by 6		
Ior	1 = 1:h		
	kl = [rcl(i); rc2(i); (rc)]	(i)+rc2(i))/(i): (-(rc1(i)+rc2(i))/((i)): 0: 0]:	
	$k_2 = [rc_2(i); rc_1(i); (rc)]$	l(i)+rc2(i))/L(i): (-(rc1(i)+rc2(i))/L(i)): 0: 0:1:	
	k3 = [(rc1(i)+rc2(i))/L(i)	<pre>; (rcl(i)+rc2(i))/L(i); (2*(rcl(i)+rc2(i))/(L(i)*2)); (-2*(rcl(i)+rc2(i))/(L(i)*2));</pre>	0; 0;1;
	k4 = -k3;		
	k5 = [0; 0; 0; 0; re3(i);	-rc3(i)};	
	k6 = [0: 0: 0: 0: -rc3(i)	r rc3(i)];	
	K = [k1 k2 k3 k4 k5 k6];		
	iprinti ('Member Number -	·);	
	forintf (llocal Stiffness	matrix of mamber (E) =)ml).	
	disn (K):	macrix of memory [n] - (n);	
	T1 = [1; 0; 0; 0; 0; 0];		
	T2 = [0; 1; 0; 0; 0; 0];		
	T3 = [0; 0; cx(i); 0; cy(:	i); 0];	
	T4 = [0; 0; 0; cx(i); 0; c	sy(i)];	
	T5 = [0; 0; -cy(i); 0; cx	(i):-0):	
	T6 = [0; 0; 0; -cy(i); 0;	cx(i));	
	T = [T1 T2 T3 T4 T5 T6];		
~			
2			
TEL			

Find the member matrix, then find the transformation matrix and get the transpose; let us get these values; I am directly getting it here, I am entering it here.

(Refer Slide Time: 01:42)

File Edit View Insert Acti	ions Tools Help	Mod-1 Lec-16- Planar, Non-Orthogonal Using C	omputer Code (Part - 2)	
1.1.4.3	🔹 » B I 🔳 🖩 🗖 🗖 🗖 🗖 🗖			
		(KAB) - EX10	23 11 9 - 11 23 9 -	900
fprint	f ('Transformation matrix of member, (T) = \n'); dim (T);		994-4	+ • •
	<pre>Ttr = T': fprintf ('Transformation matrix Transpose, [T] disp (Ttr):</pre>	= \n');	-9 -9 -4 4	220
	<pre>kg = TLt*k*y; fprintf ('Global Matrix, [K global] = \n'); disp (Kg); for p = 1:6</pre>		0 0 0 0	-338 -354
	<pre>ror q = 1:6 Knew((1(i,p)),(1(i,q))) =Kg(p,q); end end</pre>	ſ	L	
	Ktotal = Ktotal + Knew; if i == 1 Ttl= 7; Kgl-Kgr	= Exio7 10 21	602-2 8922-2	
	fonbarl= vtl'*fonl; elseif_i == 2 vt2 = v; Kg2 = Kg;	5 5	2 -1 0 0	1
	fenbar2= Yt2'*fen2; else Tt3 = T; Ka2+Ka:	-5 -5 -	2 2 0 0	
(*) end	(enbar3= TL3**fen3; end	660	2 - 20 - 20	
NPTEL	<u> </u>	L	_	13/27
		13		

So, I am trying to get each member here. So, I am writing it here. So, we get K A B as E into 10 power minus 4, 23, 11, 9 minus 9, 0, 0, 11, 23, 9 minus 9, 0, 0, 9, 9, 4 minus 4, 0, 0 minus 9 minus 9 minus 4, 4, 0, 0, 338 minus 338, 338, 338.

Similarly, I can find K B C which is E 10 to the power minus 4, 21, 10, 5 minus 5, 0, 0, 10, 21, 5 minus 5, 0, 0, 5, 5, 2 minus 2, 0, 0 minus 5 minus 5, 2, 0, 0, 250. Similarly, one can find K C D also; there is no big deal about it, you assemble this and get K u u bar.

it View Insert Actions Tools Help	Mod-1 Lec-16- Planar, Non-Orthogonal Using Computer Code (Part - 2)	
<u>∕</u> • <i>•</i> • ≫ • » B I ■ ■ ■ ■ ■ ■ ■ ■ ■		
<pre>fprint(')fifthese Matrix of complete structure, disp (statal); Emm - resco(6); for stime - resco(6); for stime - resco(6); for stime - resco(6); for stime - resco - rescond - rescon</pre>	$[Rotal] = \langle n^{2} \rangle :$ $[Fotal] = \langle n^{2} \rangle :$ $[Fotal] = \langle n^{2} \rangle :$ $[Fotalline given in Ni or Nime exertained of I is in the second seco$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
deli= (delu: deli); deli= zeros (6,1);	2882.9	
	898.50	0
*	(-3682:20	6
IPTEL	\sim	0

(Refer Slide Time: 03:38)

So, get the total stiffness matrix complete get the total stiffness matrix.

Then plug out the unrestrained matrix alone. So, we get K u u, but in the global degree which will be E into 10 power minus 4, 44, 10, 9, 5, 0, 0 minus 5, 10, 41, 0, 5, 6 minus 2, 9, 0, 250, 4, 0 minus 250, 0. So, 5, 5, 0, 339, 0, minus 2 minus 250, 0, 3, 1, 3, minus 120. So, minus 5, minus 2, 0, minus 2, minus 120, 2, 44 K u bar.

We directly get this from this statement then we inverted we get K u u inverse, then we get the joint load vector; we can see at the joint load vector if you look at the figure the joint loads are applied for this problem, I shown the figure here, I get; I have one load of 50 kilo Newton and other one of 100 kilo Newton applied along the degree of freedom 3 and 6.

So, joint load along 3 and 6 along 3 it is positive along 6 negative from this, you plug out the joint load unrestrained degree then get delta u. So, the delta u obtained in the global degree is actually 1 by E of minus 986.0 minus 75.8, 2882.9 minus 2.50, 898.50 minus 3682.2 at degrees of freedom level 1, 2, 3, 4, 5 and 6.

(Refer Slide Time: 07:02)

			ſ		
			M2 1	C 0	
	for i = 1:n	- 1	1.14	1.2408	
	for p = 1:6	(MAR)		1.5400	
	<pre>deli(p,1) = del((1(i,p)),1) ;</pre>	Cing	M. /		
	end			0.2167	
	if i == 1			0.201	
	delbar1 = deli;		/ Va		
	<pre>mbar1= (Kg1 * delbar1)+fembar1;</pre>		/ 14	_ /	
	fprintf ('Member Number -');		()	- CORSE \	
	disp (i);			/ 0 0.0	
	fprintf ('Global displacement matrix [DeltaB	<pre>/ar] = \n');</pre>	VA /	()	
	disp (delbar1);		IT /	andere	
	fprintf ('Global End moment matrix [MBar] =	\n*);		1-0.00.24	
	disp (mbarl);				
	elseif i == 2			20-	
	delbar2 = deli;		198	-0 2874	
	mbar2= (Kg2 * delbar2) *fembar2;				
	fprintf ('Member Number =');				
	d15p (1);		lt 1	D' 2001	
	fprintf ("Global displacement matrix [Deltam	$ ar = \langle n' \rangle$;		0 20 19	
	disp (delbar2);				
	tprinti ("Giobal Knd moment matrix (MBar) =	(0.))			
	disp (moarz);			1 -	
	0150		0		
	deibars - deil;				
	nbar3= (kg3 * deibar3)+tembar3;				
	iprinti ('Member Number =');				
	disp (i);	and a links			
	<pre>iprinti ('Giobal displacement matrix (Deitam disp (delbar2);</pre>	ar) = (n/)/			
	disp (delbars);	lette			
	disp. (shar);	70.13			
	utsp (moars)/				
an l	and				
No a	000				
朱)					
-					
PTEI					

Once we get this, then we try to find the del bar and M A bar of every member for every member. So, we now find M bar A B which will be M 7, M 1, V 9, V 4, H 8, H 3 which actually is equal to 1.3408. There is a multiplier of E outside 2.167, 0.0858 minus 0.0858 minus 0.3894; 0.3894.

(Refer Slide Time: 08:05)

Idit View Insert Actions Tools Help	Mod-1 Lec-16- Planar, Non-Orthogonal Using Computer Code (Part – 2)	Prof. Srinivasan Chandrasekar
<u>∠</u> • <i>•</i> •9- "B <i>I</i> ∎∎∎∎		
<u>Output:</u>		
Momber Number = 1		
Local Stiffness matrix of member, 0.0023 0.0011 0.0009	(K) =	
A) 0.0011 0.0023 0.0009	0.0009 0 0	
0.0009 0.0009 0.0004	-0.0004 0 0	
L -0.0009 -0.0009 -0.0004	0.0004 0 0	
0 0 0	0 -0.0338 -0.0338	
Transformation matrix of member,	[7] =	
0 1 0 0 0	0	
0 0 0 0 -1	0	
0 0 0 0 0	-1	
0 0 1 0 0	0	
0 0 0 1 0	•	
Transformation matrix Transpose,	[7] =	
1 0 0 0 0	0	
	0	
0 0 0 0	1	
0 0 -1 0 0	0	
0 0 0 -1 0	0	
Global Matrix, (K global) =	-	
0.0023 0.0011 0	0 -0.0009 0.0009	
0.0011 0.0023 0	0 -0.0009 0.0009	
0 0 0.0338	-0.0339 0 0	
-0.0009 -0.0009 0	0.0338 0 0 0	
0.0009 0.0009 0	0 -0.0004 0.0004	
【米】)	
NP I EL		
		1

Similarly, I get this is my local stiffness matrix of A B, this is my global matrix of A B, this is my local stiffness matrix of B C, this is my global stiffness matrix of B C.

(Refer Slide Time: 08:22)

ar area	Insert Actions loois Help	Mod-1 Lec-16- Planar, Non-Urthogonal Using Computer Code (Part – 2)	
1.			
	Local Stiffness matrix of member (K) =	Л	
	0,0021 0,0010 0,0005 -0,0005 0	0	
. .	0.0010 0.0021 0.0005 -0.0005 0	0	
ea	0.0005 0.0005 0.0002 -0.0002 0	0	
	-0.0005 -0.0005 -0.0002 0.0002 0	0	
	0 0 0 0 0.0250	-0.0250	
	0 0 0 0 -0.0250	0.0250	
	Transformation matrix of member, (7) =		
	1 0 0 0 0 0		
	0 1 0 0 0 0		
	0 0 1 0 0 0		
	0 0 0 1 0 0		
	0 0 0 0 1 0		
	0 0 0 0 0 1		
	Transformation matrix Transpose, [7] =		
	1 0 0 0 0 0		
	0 1 0 0 0 0		
	0 0 1 0 0 0		
	0 0 0 1 0 0		
	^	~	
	Global Matrix, [K global] =		
	0.0021 0.0010 0.0005 -0.0005 0	0	
	0.0010 0.0021 0.0005 -0.0005 0	0	
	0.0005 0.0005 0.0002 -0.0002 0	0	
CRe	-0.0005 -0.0005 -0.0002 0.0002 0	-0.0250	
	0 0 0 0 0 0.0250	0.0250	
	· · · · · · · · · · · · · · · · · · ·		
	0		
-			
*1			
PTEL			
			17
			17

(Refer Slide Time: 08:35)

$L_{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2$	Edit View	Insert Actions Tools	Help				Mod-1 Lec-1	16- Planar, Non-Orthogonal Using Computer Code (Part – 2)		
Member Funder - 3 Local Stiffness matrix of member, $ = -$ 0.0010 0.0007 -0.0007 0 0 0.0010 0.0007 -0.0007 0 0 0 0.0010 0.0007 -0.0007 0 0 0 0 1.0000 0.0007 -0.0003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0000 0 0 0 0 0 0 0 0 0 0	• / •	🖉 • 🦻 🐐 🔰	B <i>I</i>			🛛 🔳 📒		- •		
Weiler Number - 3 Local Stillness attrix 0 memory, 101 - 0.0007										Т
Local Stiffness matrix of memory. [K] - 0.0220 0.010 0.0007		Member Number -	- 3							
LG: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					(11) -					
LGE 0.0010 0.0027 0.0007 0.0007 0.0007 0.0003 0		Local Stiffness	5 matri:	a or memoe:	-0.0007	٥	۰٦			18
Lg:€ 0.0037		0.0020 0	0.0020	0.0007	-0.0007	0	0			
Lg -0.007 -0.003 0.003 -0.002 0 0 0 0.002 -0.002 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.412 0.412 0 0 0 0.412 0 0.412 1 1.0000 0 0 0 0 0 0 0.412 0 0.412 0 1 1.0000 0 0 0 0.412 0 1 1.0000 0 0 0.412 0 0 0 0 0 0.412 0 0.412 0 0 0 0 0 0 0.412 0 0.412 0 0 0 0 0 0	1. 16	0,0007 0	0.0007	0,0003	-0,0003	ů.	ě l			
0 0 0 0 0 0 0.002 -0.002 Transformation matrix of member, [7] + 1.000 0	kg	-0.0007 -0	0.0007	-0.0003	0.0003	0	0			1
0 0 0 0 0 0 0 0 0.0302 Transformation matrix of member, [1] + 1.000 0 0 0 0 0 0 0 0 0 0 0.0172 0.094 0 0 0 0 0.0472 0.094 0 0 0 0 0 0.0472 0.094 0 0 0 0 0 0.0472 0.094 0 0 0 0 0 0.0472 0	/	0	0	0	0	0.0302	-0.0302			4
Transformation sension: (T] = 1.000 0 0 0 0 0 0.000 0 0 0 0 0 0.012 0 0.0144 0 0 0 0.012 0 0 0 0 0.012 0 0 0 0 0.012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.412 0 -0.514 0 0 0.412 0 -0.514 0 0 0.412 0 -0.514 0 0 0.412 0 -1.514 0 0 0.412 0 -1.514 0 0 0.412 0 -1.514 0 0 0.412 0 -1.514 0 0.0001 -0.0003 0.0002		0	0	0	0	-0.0302	0.0302			1
1.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Transformation	matrix	of member	(T) =		-			1
0 1.000 0 0 0.0844 0 0 0 0.0172 0.02344 0 0.0442 1 0 0 0.0472 0 0.0442 1 0 0 0.0472 0 0.0442 1 0 0 0.0472 0 0.0442 1 0.000 0 0 0 0 0 0 0.4472 0 0.0442 0 0 0 0.4472 0 0.0442 0 0 0 0.4472 0 0.4492 0 0 0 0.4472 0 0.4492 0 0 0 0.4472 0 0.4492 0 0 0 0.4472 0 0.4492 0 0 0 0.4492 0 0.4492 0 0 0 0.4492 0 0.4192 0 0 0.		1.0000	0	0	0	0	0			
0 0 0.412 0 0.4544 0 0 -0.6544 0 0.412 0 0.4546 0 0 -0.6544 0 0.412 0 0.412 Transformation matrix Transpose, [T] = 1.000 0 0 0 0 0 0 0 0 0.412 0 0 0 0 0 0 0.412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 1	1.0000	0	0	0	0			1
0 0		0	0	0.4472	0	0.8944	0			
0 0		0	0	0 0044	0.4472	0 4470	0.8944			1
L = 0 0 <td></td> <td>0</td> <td>0</td> <td>-0.8944</td> <td>.0 .0.44</td> <td>0.4472</td> <td>0 4422</td> <td></td> <td></td> <td></td>		0	0	-0.8944	.0 .0.44	0.4472	0 4422			
Transformation matrix Transpose, [T] = 1.000 0 0 0 0 1.000 0 0 0 0 0 0.054 0.0544 0 0 0 0.472 0 0.4944 0 0 0 0.4472 0 0.4944 0 0 0 0.4472 0 0.4472 0 0 0 0.4472 0 0.4472 0 0 0 0.4472 0 0 0.4472 0 0.0000 0.0003 0.0003 0.0003 0.0003 0.0000 0.0003 0.0003 0.0003 0.0003 0.0004 0 0.4222 0.0120 0.0120 0.0120 0.0120 0.0003 0.0003 0.0003 0.0004 0.0006 0.0120 0.0120 0.0004 0.0004 0.0120 0.0120 0.0120 0.0120 0.0120 0.0004 0.0006 0.0120 0.0120 0.0120 0.0120 0.0120 0.0004			0	0	0.0344	0	0.4472			
1.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Transformation	matrix	Transpose.	(7) =					
0 1.000 0.022 0.0544 0.0412 0.0412 0.0412 0 0 0.0412 0.0412 0.0412 0 0 0.0412 0.0412 0.0412 0 0 0.0412 0.0412 0.0412 0 0.000 0.001 0.0402 0.0412 0.0412 0.000 0.001 0.002 0.000 0.0000 0.0000 0.000 0.001 0.022 0.022 0.0000 0.0000 0.000 0.001 0.022 0.022 0.0120 0.0120 0.000 0.000 0.0120 0.0120 0.000 0.0000 0.000 0.0120 0.0120 0.0120 0.0120 0.000 0.000 0.0120 0.0120 0.0000 0.0000 0.000 0.0000 0.0120 0.0120 0.0000 0.000 0.0000 0.0120 0.0120 0.0000 0.000 0.0000 0.0120 0.0120 0.0000 0.000 0.0000 0.0120 0.0120 0.0000 0.0000 0.000 0.0000 0.0120 0.0120 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.00000 0.00000 0.00000 0		1.0000	0	0	0	0	0			1
0 0 0.4472 0 -0.5444 0 0 0 0.4472 0 0.4472 0 0 0 0.5444 0 0.4472 0 0 0 0 0.5444 0 0.4472 0 0 0 0 0 0.4472 0 0 0 0 0.4472 0 0 0.4772 (stock Matrix, If global] = - 0.0005 0.0003 -0.0003 -0.0006 -0.0006 - 0.0006 0.0003 -0.003 -0.0006 -0.0006 - 0.0006 0.0003 -0.0120 0.0120 0.0009 0 - 0.0003 -0.0033 -0.0122 0.0120 0.0120 0 - 0.0004 -0.0006 0.0120 -0.0120 0 - 0.0004 -0.0006 0.0120 -0.0004 0 - 0.0004 -0.0006 0.0120 -0.0004 0 - 0.0004 -0.0006 0.0120 -0.0004 0 - 0.0004 -0.0006 0 - 0.0004 -0.0006 0 - 0.0004 -0.0004 0 - 0		0 1	1.0000	0	0	0	0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0.4472	0	-0.8944	0			1
0 0 0.4422 0 0.4472 0 0 0.4494 0 0.4472 Global Matrix, [K global] 0 0.4472 0 0.4472 Global Matrix, [K global] 0 0.4474 0 0.4472 Global Matrix, [K global] 0 0.4094 0.0096 0.0094 -0.003 0.0031 0.0032 0.0096 0.0096 0.0096 -0.0033 -0.0031 -0.0034 0.0094 0.0096 0.0120 -0.0034 -0.0012 0.0120 0.0120 0.0123 0.0093 -0.0004 -0.0006 0.0120 -0.0120 0.0094 0.0093		0	0	0	0.4472	0	-0.8944			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0.8944	0	0.4472	0			
€10-041 Hattit, U [20-041] - -0.0003 -0.0003 -0.0005 9.0010 0.0020 -0.003 -0.0005 -0.0006 9.0010 0.0020 -0.003 -0.0005 -0.0006 9.0010 0.0020 -0.003 -0.0005 -0.0006 0.0030 -0.0032 -0.0022 -0.0020 -0.0006 0.0030 -0.0042 -0.0220 -0.0120 -0.0120 0.0006 -0.0006 0.0120 -0.0120 -0.0120 0.0006 -0.0006 0.0120 -0.0120 -0.0120 0.0006 -0.0006 0.0120 -0.0083 -0.0083 0.0006 -0.0006 0.0120 -0.0083 -0.0083		0	0	0	0.8944	0	0.4472			4
L = 6 0.0030 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0006 </td <td></td> <td>Global Matrix,</td> <td>[K gloi</td> <td>bal] =</td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td>		Global Matrix,	[K gloi	bal] =			5			
↓ - € 0.0010 0.0003 -0.0003 -0.0003 -0.0003 -0.0006 • 0.003 -0.0003 -0.0024 -0.0224 -0.022 -0.0120 -0.0120 • 0.003 -0.0006 -0.0120 -0.0120 -0.0120 -0.0120 -0.0120 • 0.0006 -0.0006 0.0120 -0.0120 -0.0120 -0.0003 -0.0003 • 0.0006 -0.0006 0.0120 -0.0008 0.0003 -0.0008 -0.0008 • PFTEL •		0.0020 0	0.0010	0.0003	-0.0003	0.0006	-0.0006			-
K = € 0.0003 0.003 0.022 -0.022 0.0120 0.0120 G 0.0006 0.0006 -0.0120 0.0120 0.0120 -0.0006 0.0006 -0.0120 0.0120 0.0003 NFTEL	Γ.	0.0010 0	0.0020	0.0003	-0.0003	0.0006	-0.0006			
G -0.0003 -0.012 0.0124 0.0124 0.0124 -0.0006 -0.0006 -0.0120 0.0120 0.0120 -0.0006 -0.0006 -0.0120 -0.0063 0.0063	1. = 6	0.0003 0	0.0003	0.0242	-0.0242	-0.0120	0.0120			-
0.0006 0.0006 -0.0120 0.0120 -0.0003 -0.0006 -0.0220 -0.0003 -0.0006 0.01220 -0.0003 NPTEL	~	-0.0003 -0	0.0003	-0.0242	0.0242	0.0120	-0.0120			
	9	0.0006 0	0.0006	-0.0120	0.0120	0.0063	-0.0063			-
		-0.0000 -0	0.0006	0.0120	-0.0120	-0.0065	0.0005			
(¥) INTEL	-	<u> </u>								
(*) NPTEL	642						-			
NPTEL	(木)									-
NPTEL	1									1
	NPTEL									
									1	3/21
	-		-		_					-

This is my local stiffness matrix of C D, this is my global stiffness matrix of C D where all have an multiplier of E outside.

(Refer Slide Time: 08:51)

Then we are able to get the full stiffness matrix the column 11 and 12 are here, then K u u, E is common out here inverse of K u u. So, we have 1 by E, here this is my joint load vector this is my partition. So, this is my J L u and this is my J L r, then I get unrestrained degree of freedom which is del bar of the whole system.

(Refer Slide Time: 09:34)

Where one by E is a multiplier once I get this, I get M bar A B, I get M bar B C and I will get M bar C D. So, let us see the labels of A B, B C and C D. So, the labels of A B, B C and C D could be 7, 1, 9, 4, 8, 3 similarly for B C it is 1, 2, 4, 6, 3, 5; for this, it is going

to be 2, 10, 6, 12, 5, 11; let us try to plot these results maybe here itself, there are 3 elements; let us mark those elements first element second element third element let us enter the values.

You know this is going to be 1.34 plus. So, 1.3408 there is an E multiplier, we cannot entering in that value here, then plus 0.2167, then along y is my reference axes is going to be the third value which is 0.0858; the forth value is negative 0.0858, the fifth value is negative. So, opposite 0.3894 and this is 0.3894; let us do it for the next member 1 and 2. So, this going to be minus of clockwise 0.2167, 2 is anticlockwise 0.7314; this is upward 0.0858, this is downward 0.0858 and this is 49.6106 and this is 49.6106; let us do it for the third member.

This is minus. So, 0.7314 and minus again. So, clockwise which is 0.6541, then minus minus 99.9142 and this is plus 99.9142 and this is positive 49.6106; this is negative 49.6106. So, friends please check the compatibility the moments are compatible; the reactions are compatible the moments are compatible the reactions are compatible we know there is the net force of 50 applied here which is actually equal to this plus this is it not.

Which is opposed by this 450, similarly there is a net downward force of 100 applied here which is actually equal to this plus this system is in equilibrium now and we are solve the problem.

So, friends, we have explained you how to solve a planar non-orthogonal structure using computer code which has been slightly modified to accommodate the input as per the problem. So, we have solve 2 examples of non-orthogonal planar structure with 2 member and 3 member, we can solve n number of problems by using this code by making appropriate modification adding the fixed end moments for the member loading and do the procedure I hope you have understood and you will practice this coding and solve such similar examples for your tutorials.

Thank you very much.