Computer Methods of Analysis of Offshore Structures

Prof. Srinivasan Chandrashekarn
Department of Ocean Engineering Indian Institute of Technology, Madras

Module - 01
Lecture - 24
Analysis of Space Frame Example - 1 (Part - 2)

(Refer Slide Time: 00:17)

(Refer Slide Time: 00:23)

So, for $y-z-x$ transformation, we already derived yesterday that x beta P y beta P and z beta p ; P is transfer the point P and beta is the transformation is actually given by $\mathrm{C} x$ square plus $\mathrm{C} z$ square root C y 0 minus C y $\mathrm{C} x$ square plus $\mathrm{C} z$ square root 0001 multiplied by $\mathrm{C} x$ by root of $\mathrm{C} x$ square z square 0 Cz by root of $\mathrm{C} x$ square plus $\mathrm{C} z$ square 010 minus $C z$ by root of $C x$ square $C z$ square $0 \mathrm{C} x$ by root of $\mathrm{C} x$ square $\mathrm{C} z$ square.
(Refer Slide Time: 02:12)

We derive this matrix yesterday multiplied by x bar P y bar $\mathrm{P} z$ bar P when you do this multiplication, I will find a relationship between x beta P y beta P z beta P as $\mathrm{C} x, \mathrm{C} y, \mathrm{C}$ z minus $C x, C y$ by root of $C x$ square plus $C z$ square root of $C x$ square plus $C z$ square minus $C y, C z$ by root of $C x$ square plus $C z$ square minus $C z$ by root of $C x$ square $C z$ square $0 \mathrm{C} x$ y root of $\mathrm{C} x$ square plus C z square multiplied by x bar P y bar Pz bar p .

So, if we expand this, I can straight away write x beta $\mathrm{P} C \mathrm{x} x$ bar P plus C y y bar P plus $\mathrm{C} z \mathrm{z}$ bar P and so on y beta P and z beta P can be written; simply I can write this.

Now, very interestingly looking at this figure coordinates of the point P on $\mathrm{x} m \mathrm{y} \mathrm{m}$ plane is now given by y beta P and z beta P is it not; how can I say that? Let us say I view this from here and draw a section; let us say my y m is vertical and my zm is to the left of that and my y beta is to the right of $\mathrm{y} m$, so this y beta and z beta. Obviously, will be the left of zm is it not z beta.

And if you take this point P somewhere on $y m$ this is $y m$; is it not; this is $y m$; let us say I rub this arrow, this is $y \mathrm{~m}$, if you take this point P and I call this is point P ; now this distance and this distance will be simply known to us and this value is what we call as psi y is also equal to this. So, now, the coordinates of this point will be given.

Coordinates of point P on the $\mathrm{x} \mathrm{m}, \mathrm{y} \mathrm{m}$ plane is now given by y beta P and z beta P ; is it not; look at this figure.
Y beta P and z beta P correct. So, I can now find sin psi y as simply z beta P by root of z beta P square plus y beta P square. Similarly cos p si y can be simply y beta P by root of z beta P square plus y beta P square, I will use this relationship now. So, the coordinates of point P with reference to the reference axes system; let us see; what is that coordinates of point P with reference to reference system should be of the point P ; let us say this figure of the point P.

Now, I call this as my point P , I am choosing this point on x y m plane, I call this as my point P for the problem. So, the coordinates of this point with the reference axes system will be 4 comma, I can write it here 4 comma 4 comma 0 with reference to j-th end, it will be 0 comma 0 comma minus 3 , correct; this end will be I write down that here coordinates of point P will be 4 comma 4 comma 0 .

Similarly, the coordinates of point P with reference to the j -th end of the member 3 that is measured from the j-th end will be 0 comma 0 comma minus 3 , you can see here with reference to j -th end, this is j -th end of this member, this is the j -th end of this member. So, 0 comma 0 comma minus 3 because z is positive; so, thus the position vectors is given by x p , y p and z p , simply 00 and minus 3 .

Now, what are the coordinates of the j -th end with respect to $\mathrm{x}-\mathrm{y}-\mathrm{z}$ axes system; we can see here coordinates of the j-th end with respect to this will be 4 comma 4 comma $3 ; 4$ comma 4 comma 3 . Similarly coordinates of the j-th end with respect to $x-y-z$ system, you can see here; this will be the origin. So, it is 0 ; is it not; this is the j-th end. So, it is 0 , now the length of the member which is 3 is also known to us which is 6.402 meters; we already computed that we can see here we already computed that.
(Refer Slide Time: 10:48)

Now, let us compute $\mathrm{C} x, \mathrm{C} y$ and $\mathrm{C} z$; the direction cosines which will be simply x k minus x by LiykyjLizkzjLi; let us do that 0 comma minus 4 by 6.402, 0 minus 4 by $6.402,0$ minus 3 by 6.402 which will give me minus 0.625 minus 0.625 minus 0.469 ; these are my directions cosines; once I get this, I can use this relationship X B P will be equal to this $\mathrm{Cx}, \mathrm{Cy}, \mathrm{C} z$ by this Y B P will be equal to this row by column and Z B P will be this row multiplied by the column.

So, let us do this relationship. So, I say x beta P which is given by C x x bar P plus C y y bar P plus C z z bar p.

So, C x and C y are anyway 0 because the x P and y P bar are 0 plus C z is 0.469 into 3 . So, that gives me this values as 1.407 y beta P ; if you look at the equation, this will be minus $C x, C$ y by root of $C x$ square plus $C z$ square of x bar P plus root of $C x$ square plus $C z$ square of y bar P minus C y C root of $C x$ square $C z$ square of z bar p.

We know these values are 0 . Therefore, this term will not be there let us substitute directly for the last term which will be minus of minus 0.625 minus 0.469 minus 3 divided by root of 0.625 square plus 0.469 square which will be plus 1.125 z beta P is given by minus $C z$ of $C x$ square plus $C z$ square of x bar of P plus $C x$ by root of square of Cx and $\mathrm{C} z$ of z power of P.

We know that this value is further 0 ; let us substitute only for this value which will be minus 0.625 into minus 3 divided by root of 0.625 square plus 0.469 square which gives me this value as plus 2.4.

Let us now compute sin psi y which is given by Z beta P by root of z beta P square plus Y beta P square we already derive this expression.

Let us substitute that now 2.40 by square root of 2.40 square plus 1.125 square which becomes 0.905 cos psi y which has been also derived as y beta P by z beta P square plus y beta P square which will be 1.125 by 2.4 square plus 1.125 square which gives me 0.424 .

So, now psi y can be said as tan inverse of 0.905 by 0.424 , because sin by cos will give you \tan and the angle is tan inverse of that which gives me 64.897 degrees, but let us carefully mark psi y depending upon the figure. Let us take the member.

