Computer Methods of Analysis of Offshore Structures
 Prof. Srinivasan Chandrasekaran
 Department of Ocean Engineering
 Indian Institute of Technology, Madras

Module - 01
Lecture - 24
Analysis of space frame: Example - 1 (Part - 3)
(Refer Slide Time: 00:17)

(Refer Slide Time: 00:27)

Is presented like this; so, this is another member. So, my axes are marked this way which is X axes, this is Z axes and this is Y axes, we are worried about this member; let us look at the view from here because this is my Xm end of this member and this is my Y m end of this member; is it not.

So, I look towards the $\mathrm{X} m$ end in the negative direction that is the view when I draw the view. So, this is my cross section let say this is my Y m X m of course, here dot Y m is vertical and Z m is to my left this is my Y m right. So, let us mark the other 2 angles; the z beta P and y beta P; let us take any point P on the plane; let say this is my point P you know the psi way angle is actually is angle between Y m and Y beta is it not.
(Refer Slide Time: 03:23)

So, what I should do is whatever value I got I should add 180 degree to this 180 degree is to be added to this; is it not. So, I am actually getting this angle, but I am adding 180 to that if I do that it becomes 244.897 degrees which is my psi Y angle for doing Y, Z, X transformation. So, by this form; friends one can easily find out the directions cosines and sin angle psi angle which is inclination of the local axes with that of the reference set of axes.

Let us do quickly one more problem and understand this further in detail. So, I have a structure system like this. So, I should now say example 2 one member this way one member this way another member vertical I have frame like this let us mark the reference axes this is my extension of this is my X axes, this is my Y axes, Z axes.

So, this becomes my origin from my reference axes system now got 3 members let us say member number one member number 2 and member number 3 let us mark the dimensions of these members let say; let us complete this. So, let say dimension is 3 meters this dimension is also 3 meters and this dimension is also 3 meters.

One is interested to compute the direction cosines and psi angle of all the 3 members that is the requirement to do that let us mark the local axes of each member the global axes is known to us the local axes I am marking this as X m Y m is anticlockwise ninety to that. So, this is Y m and Z m is going to be this way if we look at this carefully this is X m and this is Y m 90 anticlockwise, then clockwise to the right Z m , this is the 90 again that is how for member one it is marked.

For member 2, I take this as my origin for member 2. So, this is my X m. So, the left Y m to the right, Z m of the member for the third member I take this as my jth node; this is my kth node. So, in that case this becomes my X m anticlockwise; this becomes my Y m and to the right this becomes my Z m correct that is how they are marked let us make a
simple table to understand; this let say the joint what are the global $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinates of the joint let us name the joints.

This is A , this is B , this is C and this is D , then let us say joint A , joint B and joint C and joint D with reference to the global axes joint A , you know A is exactly matching with the reference axes origin. So, it 000 ; if we look at the point B , you know you have travelled 3 meters in X , but along y and z you are not travelled anything. So, 3000 if you look at C that is this joint you have travelled 3 meters along X along; we now travel, but along Z it is minus 3 meters is it not; if you look at D you have travelled 3 meters along X you have travelled 3 along Y , then you are travelled minus 3 along Y and you are travelled minus 3 along Z as well.

So, now the coordinates $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are been established for all the joints $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$; let us now try to estimate the psi angle of that.
(Refer Slide Time: 09:55)

Let us make another table let say member the length of the member Li, but say in meters let say the joint system what is the ordinate of jth joint and k joint let us now mark the directions cosines which are $\mathrm{C} x, \mathrm{C} y$ and $\mathrm{C} z$, then let us decide about the type of transformation we want.

Then we take about the psi angle let us see what are the members let say A B, B C and C D there are 3 members lets mark them here A B, B C and C D let see the length of all the
members AB is 3 meter BC is again 3 meters C D is also 3 meters let us say $3.0,3.0$ and 3.0; let see what is the j end k end of $\mathrm{A} B$ this is j and this is k that is origin here.

So, its j is at A ; is it not and k is at B , similarly for this, this is at B and this at T where as for C D origin is here. So, it is D and C correct let us talk about direction cosines.
(Refer Slide Time: 11:27)

Let us ask a question how a direction cosine is define now direction cosine is cos gamma ij that is what is called direction cosine where if I say gamma 11 , it is actually the first one is the X m axes the second one is the global axes. So, I want to know for the member one what would be the $\mathrm{C} x$ values that is inclination of $\mathrm{X} m$ axes with X axes, Y axes, Z axes and that angle I have derive the cos of that angle.

Let us see this figure now what is inclination of X m axes with x . So, it 0 ; is it not because X m are aligned in that case this is the angle; this is the angle is 0 ; what is inclination of Y m axes, X m axes with Y 90 degree; X m axes with Z 90 degree. So, this is 90 , this is 90 therefore, I should say $\mathrm{Cx}, \mathrm{C} y, \mathrm{C} z$ will be $\mathrm{Cx}, \mathrm{C} y$ and $\mathrm{C} z$; in this case will be cos of this cos 010 and 0 let us do this for member 2 . So, I want to now find inclination of $\mathrm{X} m$ member X m of that member with x y and z let us see; what are these angles.

X m is align along with Z therefore; the angle of inclination of X m with x global is 90 is it not. Similarly Y m sorry X m with y is again 90 , is it not; whereas, X m with z is
aligned, but minus. So, I should say minus 1 . So, the $\mathrm{C} \mathrm{x}, \mathrm{C}$ y and C z for member 2 will be 0,0 and minus 1 . Similarly for member 3 let us see, what is inclination of $X \mathrm{~m}$ axes with X, Y and Z global; let see the angles X m of this member is vertical. So, X m inclination with X is 90 degree; 90 degrees X m inclination with y is aligned. So, 0 degrees is it not. So, 0 degrees.

X m inclination with z is 90 degree again. So, my $\mathrm{C} x, \mathrm{Cy}, \mathrm{C} \mathrm{z}$ for member 3 will be actually 0 because cos 90 is 01 and 0 ; let us enter that value here is going to be 10000 minus 1 and 010 is it not; that is what we have found it we can see 10000 minus 101 010000 minus 1010 ; let us decide the type of transformation.

You know if we look at the X m axes it is inclined with x . So, one can go for any kind of transformation we can try Y-Z-X transformation for the member B C X m is aligned with Z . So, no issue $\mathrm{X} m$ is aligned with Z . So, no issue, one can go for Y-Z-X transformation if we look at third $\mathrm{X} m$ is aligned with Y . So, I cannot go for Y-Z-X, I should go for Z-YZ transformation. So, my angle will be psi Y, psi Y and psi Z, I would like to see this.

The moment you say psi Y , it is angle between the Y m and Z m and Y m and Y , is it not that is the angle, let see what is happening here Y m and Y . So, that is 0 , similarly for the second member Y m and Y again 0 for the second member for the third member Y m is horizontal whereas, Y is vertical. So, 90 degree 90 .
(Refer Slide Time: 16:34)

So, by this logic one can easily workout the psi angle by inspection. So, friends let us look at the summary of this lecture in this lecture we picked up 2 examples problems of phase frame V 4 out the direction cosines, we also found out the psi angle after deciding the type of transformation correct, we extend this algorithm to analyse 3 dimensional phase structure in the next class.

Thank you very much.

