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Friends, welcome to the 25th lecture in module 1. In the previous lecture,  some 3 d

analysis, we discussed about how to evaluate transformation matrix, rotation matrix, how

to estimate the direction cosines and the psi angle which are very important for analyzing

beam elements or stress elements oriented in space at its arbitrary location with reference

to the X, Y, Z axis, let us apply this logic and extend our knowledge of 2 dimensional

analysis into 3 dimensional frame structures in the same style.
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So, the primary objective is to extend the knowledge of 2 dimensional analysis to 3 d

analysis. So, we have to follow the same set of expressions and equations with the small

modification which will make us to understand very easily and much faster how to use

those  transformation  in  a  simpler  form to do analysis  of  3  dimensional  space  frame

structures.

As usual, we will consider a fixed beam for our analysis as a beam element and we all

agree that there are 2 nodes for the ith member namely j node and k node each node.

Now will have 3 translations and 3 rotation of degrees of freedom making it 6 in each

node.  So, the beam element  now will  have 12 degrees of freedom which makes the

stiffness matrices size 12 by 12 that is a first difference.

In 2 d analysis, we had seen that the member matrices can be of size 4 by 4, if we neglect

excel  deformation  or  6  by  6,  if  you  include  axial  deformation  for  non  orthogonal

members, in this case, it will be 12 by 12.
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Let  us take a simple member arbitrarily  oriented arbitrarily  oriented with 2 nodes; 2

nodes. Let us mark the nodes as j and k is an ith member that is a member designation.

So, as usual this figure is going to mark the local axes system and this figure is going to

represent the reference axis system. So, if this is the member orientation we all know that

this is going to be my xm 90 degree anticlockwise to that is our ym and this is zm this of

course, is true in both the cases let us mark the axes for marking the degrees of freedom

in both joints.

Now, let us mark the translations at the jth end first along x axis. So, let us first mark the

axes. So, let us mark the displacement along x, I call this as delta t that is a suffix we are

using and along y which is delta r and along z which is delta v, then rotation about this.

So, put your thumb towards delta t direction remaining 4 fingers will point the rotation.

So, let us mark it this way as theta l or one can mark with double arrows also l then theta

n and of course, theta p. Now let us come to the kth n displacement along x, delta h,

along y, delta s and along z, delta w. This what we have used earlier in a derivation also

rotation about h 36 axes. So, we call this as theta m and this as theta o and this as theta q

this; what we have used in the earlier lecture also, now this is marked as per the local

axes system.



I want to mark them for global axes in the similar manner, let me mark the axes first, let

say this is my x axis, this is my y axis, this is my z axis, the reference axis system, let us

mark the corresponding displacements. So, this is going to be along x which is going to

be delta t, but with the bar indicating, it is reference axes system delta t, then delta r, then

delta v, then rotations theta l bar theta n bar and theta p bar.

Similarly, here delta h bar, delta s bar and delta w bar, theta m bar, theta o bar and theta q

bar. So, we have now 2 sets of degrees of freedom; one expressed in local axes system

other expressed in global axes or reference axes system.
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Having said this, it is assumed now that orientation of the local axes system with respect

to the reference axes system can be described in terms of the direction cosines C x, C y

and C z and the so called psi angle. We also know C x, C y and C z are given by xk

minus xj by L i yk minus yj by L i zk minus zj by L i where L i is root of sum of squares

of these.
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Now, the set of translations at jth end measured in local axes system can be connected to

the reference axes system as below, let say the displacements are delta t delta r and delta

v for the ith member at the jth node; is it not. So, this can be now connected to C 11, C 1

2, C 1 3, C 2 1, 2 2, 2 3, 3 1, 3 2 and 3 3 of that of delta bar t delta bar r and delta bar v of

the ith member.

So, now one can see very clearly here this equation connects the translation at jth end, is

it not call this equation number one similarly
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One can also write  down for  rotations  that  is  theta  l,  theta  n,  theta  p is  now again

connected to the global rotations where as these are connected which are nothing, but

rotations at jth end equation 2.
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I can also do the same thing for the kth end let us do that quickly delta h, delta s, delta w,

is  connected  to  that  of  the  global  displacements  by  this  matrix  where  as  these  are

connecting translations at kth end equation 3. Similarly I can also connect rotations at the

kth end which will be theta m, theta o, theta q, theta m bar, theta o bar, theta q bar by a

matrix C 1 1, 1 2, 1 3, 2 1, 2 2, 2 3, 3 1, 3 2, 3 3; equation 4.

So, now I can combine all these 4 equations and write in one form. It will be all the 12

displacements.
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Which will be delta t, delta r, delta v that is translation at jth node theta l, theta n, theta p,

rotations at jth node h, s, w, translation at kth node rotations at kth node can be now

connected by a transformation matrix to the global which can be delta t bar, delta r bar,

delta v bar, theta l bar, theta n bar, theta p bar, delta h bar, s bar, w bar, theta m bar, theta

o bar, theta q bar.

Now, each one is a 3 by 3 matrix, here just now we saw that let us divide this also into 3

by 3. So, this is 12 by 1, this is also 12 by 1. So, this has got to be 12 by 12; is it not. So,

this is C 1 1, C 1 2, 1 3, 2 1, 2 2, 2 3, 3 1, 3 2, 3 3 and remaining all are 0s. Similarly 1 1,

1 2, 1 3, 2 2, 2 1, 2 2, 2 3, 3 1, 3 2, 3 3, this is the second set which we just now derived,

I am just combining all of them.

The third one; 1 2, 1 3, 2 1, 2 2, 2 , 3 1, 3 2, 3 3 remaining all are again 0; the fourth one

is the last one; 1 1, 1 2, 1 3, 2 1, 2 2, 2 3, 3 1, 3 2, 3 3 can combine that.
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So, now I can write a single expression saying the displacement of the ith member of this

space  frame is  connected  to  the  displacement  of  the  member  of  the  space  frame in

reference axes system by a transformation matrix which is derived for the space frame

for ith member, I call it as question number 5 where ti in simple terms can be expressed

as C i 0, 0, 0, 0, C i 0, 0, 0, 0, C i 0 and remaining all are 0s C i.

So, only the diagonal members only the diagonal or C i which are all exactly 3 by 3 that

makes 12 by 12 that is the transformation matrix in 3 d space having understood this the

transformation matrix has special properties as applied to conventional 2 d analysis.
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The  transformation  matrix  in  space  of  the  ith  member  transpose  will  be  exactly

transformation matrix in space of the ith member with inverse and hence the elements of

the transformation matrix whose transpose is also applicable to the same algorithm.

Therefore delta bar I can now be simply said as t transpose of delta i where the C matrix

is called the rotation matrix whose elements are the direction cosines. So, C y can be

used for Y-Z-X transformation and C z can be used for Z-Y-X transformation which

contains the direction cosine and the psi angle correct. So, friends one can also say the

equations which are done for 2 d analysis are also valid for 3 d analysis.
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Like the member end reactions will be given by T i of global reactions, if you want to

find the global stiffness matrix, I can say it is T transpose k local of T of space this valid

similarly if you want to find k unrestrained into delta u unrestrained will give me the

joint load unrestrained. So, then end moment of the ith will be k of ith transformation

matrix of delta bar plus FEM of the ith member all these relationships are valid which I

have been actually derived and applied for a 2 d analysis.
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Let us look at the summary; now friends, we are extending the process of understanding

2 d analysis to 3 d analysis, we derive the transformation matrix which connects xm ym

zm responses  to  X-Y-Z system which  can  be  established  for  any  member  which  is

arbitrarily oriented the transformation matrix contains direction cosines and properties of

psi angle which need to be estimated for each member in this space frame, we will take

of an example in the next lecture and try to solve this problem and apply the concept

using computer program.

Thank you very much.


