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Friends, let us continue with the discussion on module 1. In this lecture we will discuss

about  some special  properties  of matrices  which are useful for computer  methods of

structural analysis.
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Let  A be  given  matrix  then  as  sub  matrix  is  defined  as  a  matrix  form by  deleting

specified rows and columns of the matrix A. Instead of doing the deletion  there is an

alternative  for this:  you can also partition  the matrix.  We will  see the advantages  of

partitioning quite a while from now. This is an useful technique when the matrix size is

too large.

Let us explain this by a set of algebraic equations.
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then the above set of eqautions can be also grouped. 



(Refer Slide Time: 03:36)

Let us see how I can say this as y 1 is equal to a 11 x 1 plus a 12 x 2 plus a 1q x q plus a

1 q plus 1 x q plus 1 plus a 1n x n. Similarly, y 2 is also grouped as: a 21 x 1 plus a 22 x

2 plus a 2q x q and then plus a 2 q plus 1 x q plus 1 plus a 2n x n. By this logic y n can be

expressed as: a n1 x 1 plus a n2 x 2 plus a n q x q plus a n q plus 1 x q plus 1 plus a nn x

n, I call this as set of eqautions 2 .
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Now, let  me express both the set of equations in a matrix form: y 1 y 2 y n can be

expressed as a 11 a 12 a 1q, a 21 a 22 a 2q, a n1 a n2 a nq of x 1 x 2 x q plus a 1 q plus 1



a 1n, a 2 q plus 2 a 2n, a n q plus 1 a nn multiplied by x q plus 1 x q plus 2 x. I call this as

equation 3. Equation 3 is a matrix representation of equation 1 and 2. In fact,  1 is a

general equation, whereas 2 is a grouped equation. So, this is one group this is another

group; till q is one group then q plus 1 is another group. I express equation 2 in two

groups: first group and second group. till  q the first group and q plus 1 onwards the

second group second group this.

Let us see what is the advantage of doing this.
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Now, I can write the vector y as A 1 and vector x 1 plus A 2 and the vector x 2, where A 1

is actually a 11 a 12 a 1q, a 21 a 22 a 2q, a n1 a n2 a n q. And A 2 is actually A 1 comma

q plus 1 which goes till a 1n, a 2 comma q plus 1 which goes till 2 n, a n comma q plus 1

which goes a nn. And x 1 is x 2 x 2 of x q and x 2 is x of q plus 1 q plus 2 till x n.

I call this equation as equation 4, ok. Now let us see the size.
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Let us write down y, we can see the size y is n into 1 A 1 is n by q, A 2 is n by n minus q,

x 1 is q into 1, and x 2 is n minus q into 1.
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So, there should be a perfect compatibility between the respective multiplying mtrices;

that is y will have n plus n into 1 which will have A 1 of n q and vector x 1 of q 1: n q n q

1 plus A 2 which will be n of n minus q A 2 which will have a vector x 2 which is n

minus q of 1. So, you can see the compatibility the number of columns and number of

rows of the adjacent multipliers should be same; number of columns and number of rows



should be same. So, ultimately this will result in a matrix of n isto 1, this will also n cross

1 I get n plus 1 .

So, there should be a perfect compatibility to ensure this grouping. Now, I can say that A

1 is a sub matrix of A of size n by q. And A 2 is a sub matrix of a of size n cross n minus

q.
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Having said this, let y be A x. That is, y 1 y 2 y n should be a 11 a 12 a 1q then a 1q plus

1 till a 1n. Similarly a 21 a 22 a 2q a 2 q plus 1 a 2n. Going till a n1 a n2 a nq a n comma

q plus 1 going till a nn, multiplied by x 1 x 2 going till xq then x q plus 1 going till x n.

that is the whole equation. I call this as equation 5, which is same as the original equation

but please understand I am going to now group them. So, what I am going to do is, I am

gong to now put partition lines; these are the two partition lines.

So, now I am writing y as two matrices A 1 partitioned A 2 which are sub matrices

multiply by the vector x 1 partition x 2, ok. So, now I can say y is A 1 x 1 plus A 2 x 2.
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Now the equation 6 is called partitioned matrix. To be very precise matrix A is vertically

partitioned,  you  can  see  here  matrix  A  is  vertically  partitioned  and  vector  x  is

horizontally partitioned. Now very important, to make valid partition of A and the vector

x it is important to establish compatibility that is number of columns of A let us say A 1

must correspond to number of rows of x 1 to make A 1 x 1 valid. That is very important,

ok.
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Let  us  call  something  about  cross  partitioning.  So  far  we  have  seen  vertical  and

horizontal partitioning of the matrix, let us consider the same equation again y is actually

A of x. Let A be partitioned both horizontally and vertically into sub matrices. Let us say

how to do that. A now will be expressed as A 11 which will be of size p by q, A 12 which

will be of size p into n minus q, A 21 which will be of size m minus p into q, and A 22

will be of size m minus p into n minus q. And the whole matrix is of size m by n . Now, I

draw a partition vertical and horizontal.
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Similarly, let us talk about x vector. Let x also be portioned horizontally. So, x vector

which is n by 2 will be actually equal to x 1 of q into 1 and x 2 of n minus q into 1. Now

I have a partition which will be horizontal, which will give me a size as n by 1. And

therefore, the resulting matrix y which will be m into 1 will also be a partition value

which is y 1 of p into 1 and y 2 of m minus p into 1 and I will have a partition of this

matrix which is going to be horizontal, therefore.


