Computer Methods of Analysis of Offshore Structures Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

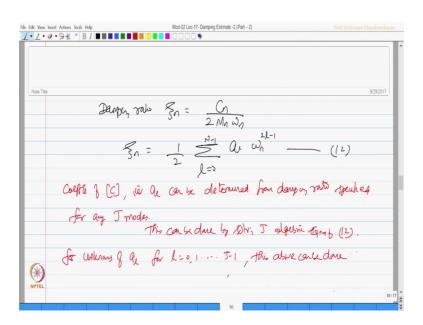
> Module - 02 Lecture - 17 Damping Estimate - 2 (Part - 2)

(Refer Slide Time: 00:16)



(Refer Slide Time: 00:23)

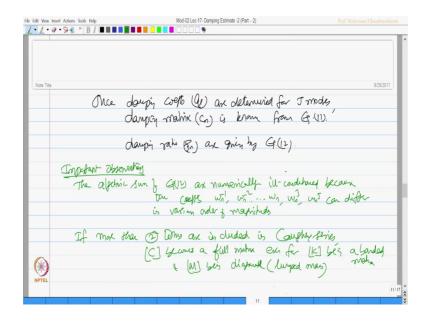
| t View Insert Actions Tools Help | Mod-02 Lec-17- Damping Estimate -2 (Part - 2)              | Prof. Srinivasan Chandraseka |
|----------------------------------|------------------------------------------------------------|------------------------------|
|                                  |                                                            |                              |
|                                  |                                                            |                              |
|                                  |                                                            |                              |
|                                  |                                                            |                              |
| lote Title                       | <u> </u>                                                   | 9/29/2017                    |
|                                  | = Q2 Wh the the winky for derivation                       |                              |
|                                  | white of the                                               |                              |
|                                  | 2                                                          |                              |
|                                  | $= Q_{\nu} \omega_{\rho}^{2} \omega_{\rho}^{\nu} M_{\eta}$ |                              |
|                                  | - Q2 WAM                                                   |                              |
|                                  | $= \alpha_{2} \omega_{1}^{4} M_{n}$                        |                              |
|                                  |                                                            |                              |
| Substitution                     | the above, h G 10, WL pot                                  |                              |
|                                  |                                                            |                              |
|                                  | $G = \sum_{n=1}^{N-1} Q_{k} w_{n}^{2k} M_{n} - (1)$        |                              |
|                                  |                                                            |                              |
|                                  | L>>                                                        |                              |
| 5                                | /                                                          |                              |
| Ð                                |                                                            |                              |
| PTEL                             |                                                            |                              |
|                                  |                                                            |                              |


Which can be said as a 2 omega n square phi n transpose k phi n can be actually said as omega n square m n by standard derivation; hence, a 2 omega n square omega n square m n which is a 2 omega n 4 m n.

(Refer Slide Time: 00:58)

For no mode, generalized damping is printy 

So, substituting for l equal to 0 1 and 2 in equation 10: substituting the above in equation 10 we get C n will be summation of l equal 0, n minus 1. We can see the equation 10 C n l equal to 0 n minus 1 phi n. So, we have worked out phi n transpose c 0 c 1 c 2 that will be the summation, right. So, it is going to be a, a l omega n 2 l of m n equation 11.

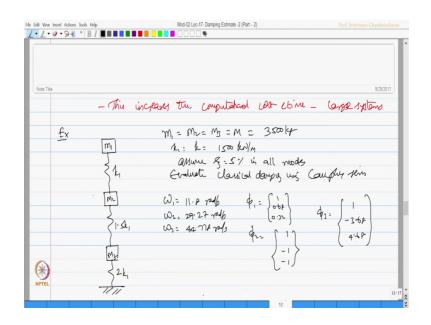

(Refer Slide Time: 01:51)



Now damping ratio zeta n is given by C n by 2 n omega n. So, zeta n is now going to be half of summation of l equal to 0 to N minus 1, a l omega n 2 l minus 1 equation 12. So, it is interesting to know that the coefficients of damping matrix that is a l can be determined from various damping ratios specify for any J modes.

This can be done by solving J algebraic equations of equation 12. So, for unknowns of a l for l equal 0 1 etcetera till J minus 1 this can be done the above can be done I do not think there is any confusion in this.

(Refer Slide Time: 03:34)

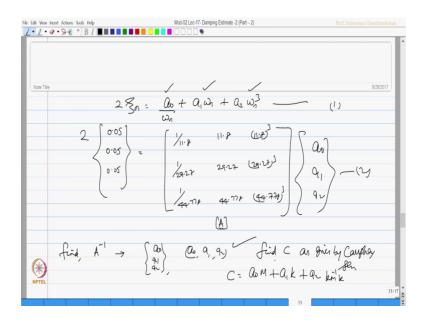



Once the damping coefficients a l are determined for J modes, then the damping matrix C n is known from equation 11. And damping ratios zeta n are given by equation 12; there are some important observations of Caughey series, the algebraic sum of the equation that is equation 12, algebraic sum of equation 12 are numerically ill conditioned because the coefficients omega n minus 1 omega n minus 2 etcetera omega n omega n three omega n 5 can defer in various order of n magnitudes.

Now, how to address this issue? If more than 2 terms are included in Caughey series, C becomes a full matrix even for K being a banded matrix and m being diagonal because masses dumped.

So, what is the consequence of this?

## (Refer Slide Time: 06:46)




The consequence is this increases the computational cost and time where then matrix now becomes a full matrix, especially when applied to large systems.

Let us take an example problem the same case what we did, let say this is m 1 m 2 m 3; m 1 m 2 and m three are m let us say it is 2500 kg. This is k 1, this is 1.5 k 1, this is 2; k 1 and k 1 is simply k which is 1500 kilo Newton per meter and let us say assume zeta 5 percent in all modes. So, using Caughey series let us evaluate. So, evaluate classical damping using Caughey series, that is the question asked.

We all know that omega 1 for this problem is 11.8 radians per second, omega 2 is 29.27 and omega 3 is 44.778 and the corresponding mode shapes also were known to us phi 1 is 1.68 and 0.32 phi 2 is 1 minus 1 and minus 1, and phi 3 is1 minus 3.68 and plus 4.68 that is we already know.

## (Refer Slide Time: 09:32)



So, we know that 2 zeta n is equal to a 0 by omega n plus a 1 omega n, plus a 2 omega n cube this is actually the value what we have from this equation ok.

So, 2 zeta n is we are taking three series 0 1 and 2; so a 0 a 1 and a 2. So, if it is 0, 1 is 0 this becomes one by omega n that is the term what we are getting here similarly if this is one. So, zeta 1 a 1 this becomes omega 1 that is what I getting here. The second term and similarly if this is 2; so 1 by 2 a 2 and this is going to be omega n cube that is what we are getting here. So, 3 terms, ok.

So, very interesting to I am assuming damping ratio same in all the modes classical damping which is expressed as in matrix form 1 by 11.8 that is my omega 1, 1 by 29.27 omega 2, 1 by 44.778 then omega 1 omega 2 and omega 3, then omega 1 cube, omega 2 cube and omega 3 cube of a 0, a 1, a 2 I can convert the above equation into a matrix form as given below.

Now, I call this matrix as A find A inverse. So, that will give you the coefficient matrix a 0 a 1 and a 2 once you know a 0 a 1 and a 2, one can find C as given by Caughey series. So, which actually equal to a 0 m plus a 1 k plus a 2 of k m inverse k this can be easily solved and found.

Let us take a computer program of this.

## (Refer Slide Time: 12:19)

| 1-0-9            | tions: Tools: Help Mod-02 Lec-17- Damping Estimates and the second secon | /      |                                                |           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------|-----------|
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                |           |
| 2.CA             | UGHEY DAMPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c /    | "(((inv(M))"K)^(k-1))"H;                       |           |
| V                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | <pre>'(((1nv(R))'R)'(X-1))'R;<br/>'C+Co;</pre> |           |
|                  | gram for finding damping matrix using Caughey method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + end  | 07007                                          |           |
| clc;             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | f ('Damping Matrix\n')                         |           |
| clear            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | disp ( |                                                |           |
|                  | er dof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arsh ( | (6) 7                                          |           |
| Vote Title dof=3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                | 9/29/2017 |
| +Ente            | r Mass-matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                                |           |
|                  | 00 0 0;0 3500 0;0 0 3500]; % mass in kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                |           |
|                  | r Stiffness Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Mass Matrix                                    |           |
|                  | 00000 -1500000 0;-1500000 3750000 -2250000; 0 -2250000 5250000]; % Stiffner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in N/m |                                                |           |
|                  | r assumed damping ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 3500 0 0                                       | /         |
| drp=[            | 5 5 5]; &damping ratio in percentage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 0 3500 0 🗸                                     |           |
| dr=dr            | p./100;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 0 0 3500                                       |           |
|                  | tf ('Mass Matrix\n')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                |           |
| disp             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Stiffness Matrix                               |           |
|                  | tf ('Stiffness Matrix\n')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                |           |
| disp             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1500000 -1500000 0                             | /         |
|                  | gen values and eigen vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | -1500000 3750000 -2250000                      | ·         |
|                  | ,w_square)=eig(K,M);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 0 -2250000 5250000                             |           |
| freq=            | sqrt(w_square);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                |           |
|                  | -1:dof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | Frequency: wn = 11.721 rad/s                   |           |
|                  | n(i)=freq(i,i);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                |           |
|                  | oden(:,i) = mode(:,i)/mode(1,i);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Frequency: wn = 29.277 rad/s                   |           |
| ſ                | <pre>printf('Frequency: wn = %6.3f rad/s \n',wn(i));</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Frequency: wn = 44.783 rad/s                   |           |
| end              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Modal Matrix                                   |           |
|                  | <pre>tf('Modal Matrix\n x = \n');</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | x =                                            |           |
| disp(            | moden);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 1.0000 1.0000 1.0000 .                         |           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                |           |
| 18 Ca            | ughey Damping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 0.6794 -1.0000 -3.6794                         |           |
|                  | eros(dof,dof);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 0.3206 -1.0000 4.6794                          |           |
|                  | =1:dof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                |           |
|                  | nn=wn(i);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | Damping Matrix                                 |           |
| 1                | or j-1:dof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 1.0e+04 *                                      |           |
|                  | wnm(i,j)=wnn^((2*(j=1))=1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1.00+04                                        |           |
| - · ·            | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      |                                                |           |
| end end          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /      | 0.6468 -0.3217 -0.0562                         |           |
| a=2"1            | inv(wnn))*(dr'): %constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | -0.3217 1.0450 -0.3420                         |           |
| 100              | os(dof,dof);% Damping matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | -0.0562 -0.3420 1.3105                         |           |
|                  | -l:dof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | -0.000 -0.0100 1.0100                          |           |
|                  | (π <sub>0</sub> (k) ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                | 16        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                |           |

So, this is the program which is showing you the Caughey damping. We have to enter the degrees of freedom and enter the degrees of freedom give the mass matrix, give the stiffness matrix, assume damping same in all modes classical damping then of course, eigen values and eigen vectors are determined we already have the answers with us, get the modal matrix then find out the damping constants and then find the c matrix the program is actually continuing from here and to here. So, it is continuing here and then print. So, mass matrix is input stiffness frequencies corresponding mode shape and the damping matrix.

You will notice that the damping matrix obtained for all the three degrees including mode 1 2 and 3 is marginally different from what you obtain from Rayleigh damping in the last lecture.

## (Refer Slide Time: 13:26)

| Note Title | 9/3/2017                              |
|------------|---------------------------------------|
|            | Sumpay                                |
|            | - Campley Stones & ashinahi (C)       |
|            | - Unitedity/ appanable - Coupley feis |
|            | - numerical Example                   |
|            | - Cemputer Code - Cempared/validates  |
|            | - [2] ~ [2] (4) = 5% (all 3) mode)    |
|            |                                       |

So, friends let us quick at the summary of this lecture, in this lecture we have learned the Caughey series of estimating classical damping matrix, we have also seen the limitations or observations of using the Caughey series. We have done a numerical example we have also given the computer coding to solve the problem and we compare the answers and validated.

You have also seen a damping matrix obtained by Rayleigh and damping matrix obtained by Caughey or more or less similar for zeta equals 5 percent in all 3 modes. I hope you have followed this lecture. You will attempt to solve this problem completely using a computer program, compare the answers for other application problems and let me know if you have any difficulties.

Thank you very much.