Computer Methods of Analysis of Offshore Structures
 Prof. Srinivasan Chandrasekaran
 Department of Ocean Engineering Indian Institute of Technology, Madras

Module - 01
Lecture - 05
Beam Element - 2 (Part - 1)

(Refer Slide Time: 00:16)

Friends, let us continue with the fifth lecture in module 1 . Where we will discuss more features about beam element as a second part of the lecture.
(Refer Slide Time: 00:45)

In the earlier lecture we said that mi is ki of delta i ; m being a vector, k being a matrix and delta being a vector is a valid equation. If you look at the typical stiffness matrix of the i-th element which we derived in the last lecture we said let us have pq r s. Let us also indicate pqq s and stiffness coefficients are kppkpqkprkp ; row first and column next say k qp k qq k qr k ps; k rp k qq k rr k rs; and k sp k sq k sr ks.

$$
[k]_{i}=\left[\begin{array}{llll}
k_{p p} & k_{p q} & k_{p r} & k_{p s} \\
k_{q p} & k_{q q} & k_{q r} & k_{q s} \\
k_{r p} & k_{r q} & k_{r r} & k_{r s} \\
k_{s p} & k_{s q} & k_{s r} & k_{s s}
\end{array}\right]
$$

So, there are rather 16 coefficients as you see in this equation, out of which one good thing is we need to only evaluate set of rotational coefficients, others can be expressed in terms of these rotational coefficients.

So, what are these rotational coefficients?

The rotational coefficients which we are interested is kpp of the i -th element, kpq of the i-th element, k qp of the i -th element, and k qq of the i -th element; these are the four coefficients. These are the four coefficients which are important. The remaining can be expressed in terms of this.

For example: we want to evaluate the end shear we can say krp is actually $\mathrm{k} p \mathrm{p}$ plus k qp of the i-th member divided by length of the member and k sp of the i-th member is minus of k pp plus krp by Li. Carefully look at this figures: kpqkqqkpp and kqp , these are the four coefficients kpp kpqqp and qq these are the four coefficients which we are interested in fact we are interested in these four: if i am able to evaluate these four remaining 12 can be expressed in terms of this, ok.

So, now the negative sign in this case is due to the fact that direction of ksp is opposite to the end shear developed by the restraining moments. Let us try to understand how this happens.

Let us look at this figure, that is this figure; look at this figure and I try to enlarge this figure again.
(Refer Slide Time: 05:34)

I have an element with both ends fixed; we have given unit rotation at the end p. So, now to control this, this will induce a moment which will be equal to k pp . This will also cause another moment which is k qp of the i -th element.

So, now this will have an anticlockwise moment which actually will be equal to k pp plus k qp is or no, this is got to be counter acted by the shear which will be creating a
clockwise couple which will be actually equal to k pp plus k qp by Li ; where Li is the length of the member. So, this will be also $\mathrm{k} p$ p plus k qp by L i. If you look at the original degrees of freedom we already said upward end shear is positive. So, this will be negative that is what we writing here k rp which is this value and this will be k sp .

Please recollect the second subscript indicates we have given unit displacement in the pth degree and the first subscript indicates the respective forces in the degrees of freedom. So, this will be k rp it will be k sp which actually equal to negative. So, this is what we got.

So, the end shear can be expressed, once I know the rotational coefficients these four. So, by this manner the remaining coefficients can also be expressed in terms of these rotational coefficients if you know that. So, out of 16 coefficients we have we need to only evaluate these 4 coefficients; only these four are important remaining can be derived if we know these four coefficients.
(Refer Slide Time: 08:24)

So, now the task is to evaluate these rotational coefficients. So, we can extend the similar logic further like. Similarly, refer to the figure I should say the number, I should say figure two this figure; referring to figure two which causes unit rotation at k -th end you can see here unit rotation at k -th end. K rq and k sq can be expressed as sum of the rotations which is k pq and $\mathrm{k} \mathrm{qq}. \mathrm{So}$,k pq plus k qq of the i-th member by L i. And this will be same $\mathrm{k} p q$ plus kqq of the i -th member by L i , but with a negative sign.

Now, similarly refer to figure three where unit translation is given at j -th end. You can see the figure three: figure three unit translations at the j -th end. The rotational coefficients are k pr and k qr. So now, I can easily find this k pr as the rotation cost by this change in slow. So, k pr can be expressed as kpp of the $\mathrm{i}-\mathrm{th}$ member with this rotation plus kpq of the $\mathrm{i}-\mathrm{th}$ member with this rotation which will be k pp plus kpq divided by Li.
(Refer Slide Time: 10:58)

Similarly, k qr will be also equal to k qp of 1 by L i plus kqq of 1 by L i of the i -th member which will be written as k qp plus k qq of the i -th member by L i .

Now, I can say k rr is k pr plus k qr by L i , which is nothing but because k pr is given by this expression which is k pp plus k pq by Li . So, which should be $\mathrm{k} p$ p plus $\mathrm{k} p q$ by L i square is already L i here plus similarly k qr is k qp plus kqq . So, k qp plus kqq by L i square which means $\mathrm{k} p$ p plus k pq plus k qp plus k qq by Li isquare.

Similarly, k sr will be negative of k pr plus k qr which will amount to minus of k pp plus k pq plus k qp plus kqq of L i square.

Now, referring to figure four where unit displacement is given at k-th end and see this figure; unit displacement at k -th end and we have a slope which is negative this is this way. The moment is this way clockwise where as the slope is on the other side. So, k ps that is this coefficient and this rotational coefficients kps is minus of kpp plus $\mathrm{k} p q$ by L i kqs is again minus of $\mathrm{k} q$ p plus kqq of L i . Therefore, k rs will be k ps plus kqs by Li which will tell me minus of $\mathrm{kpp} \mathrm{k} p q \mathrm{k}$ qp plus qq by L i the whole square. Whereas, k ss will be positive of $\mathrm{k} p$ plus pq qp and qq of $\mathrm{L} i$ square.

So, friends look at these equations which are end shear they are expressed in terms of the rotational coefficients, the end shear is again expressed in terms of rotational coefficients. So, the interest is the end shears can be expressed in terms of rotational coefficients.

So, we are now interested only to evaluate the 4 rotational coefficients to get the full stiffness matrix of 4 by 4 containing 16 coefficients. So it is very simple, we do not have derive all the 16 we derive only the 4 we can get the remaining 12 automatically from these set of equations what we derive just now.
(Refer Slide Time: 16:39)

So, I can now make a matrix saying that the k matrix which will be pqr and $\mathrm{s} ; \mathrm{pqr}$ and s. This is k pp , this is kpq , and this is k qp , this is kqq ; row first and column next. I evaluate only this four, remaining are derivable very simply this is kpp plus kpq by L
that is sum of these two. And this is k qp plus $\mathrm{k} q q$ by L that is sum of these two by L . This value will be k pp plus k qp by L which will be sum of these two.

And this value will be minus of k pp plus k qp by L which will be as same as this with the negative sign. Similarly this value will be k pq plus kqq by L which is sum of these two. And this will be minus of k pq plus $\mathrm{k} \mathrm{qq} \mathrm{by} \mathrm{L} .\mathrm{Now} \mathrm{let} \mathrm{us} \mathrm{come} \mathrm{to} \mathrm{this} \mathrm{argument}$, this will be $\mathrm{k} p$ p plus pq plus qp plus qq by L square which will be sum of these two by L and this term will be negative of kpp plus k pq plus k qp plus k qq the same with the negative sign.

The forth will be the same value with the negative sign that is minus of k pp plus k qp by L minus of k qp plus k qq by L . Then, this value will be the sum of these two by L , therefore minus k pp plus kqp plus kqp this is kpq , this is kpqkpqqp plus kqq by L square this will be plus of this value which is pp pq qp qq by L square.

So friends, if I am able to evaluate these four values: 123 and 4 that is this value this value and this and this all the four remaining all can be calculated with the help of this particular table. So, the job is now to evaluate these four rotation coefficients $\mathrm{kpp}, \mathrm{k} \mathrm{pq}$, k qp , and $\mathrm{k} \mathrm{qq}. \mathrm{So} ,\mathrm{we} \mathrm{need} \mathrm{to} \mathrm{evaluate} \mathrm{this} \mathrm{that} \mathrm{is} \mathrm{all}$.

