Structural Health Monitoring (SHM) Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Lecture – 26 Vibration based health monitoring scheme – Part 2

(Refer Slide Time: 00:20)

		4/1.0218
Darlige	delichia by frequency-band melsod	
	FBDD - Frequency-based damag	k detectar
A single damage	index for its member f any shuctured sy	den i grinby:
DIj	$= \left[\sum_{i=1}^{NM} e_{ij}^{2} \right]^{-1/2} - e_{ij}^{2}$	Ð
Mrex DI	- damage index (indicatar) @ tu j = + b vibratia moder considered for	¹³ denest j tu shikir Tu anahos
Ċij	- localization erver for is mode, is the disclined system	tu js elenont f
		7

Alternatively, one can also use frequency band method for Damage Detection called FBDD, Frequency based damage detection. A single Damage Index for j th member of any structural system is given by damage index of j th member is summation of i equals 1 to N M, the number of vibration modes square i j minus half.

Where D I is the damage index or indicator at the j th element of the structure; N M indicates number of vibration modes considered for the analysis, e square i j is actually the localization error for i th mode in the j th element of the system.

(Refer Slide Time: 03:10)

				4/11/2218
which is onin by				
Q.;; =	NM VM Zk Ka	F, ∑F k=:	ij	Ø
Zi	- <u> </u>		(9)	
When Zi. indicates for	Racharol change	which is cour	rd by the dan	noge
ແມ: 	ω ^{*¹} - ω	(19		
				9 9/10/10/10/10/10/10/10/10/10/10/10/10/10/

Which can be given by e ij is Z i summation k equals 1 N m Z k minus F i j by summation k equals to 1 N m F k j, Z i is delta omega i square by omega i square. Where Z i indicates the fractional change which is caused by the damage in the i th eigenvalue.

Delta omega i square is omega i square minus omega square, where omega i square is the change in the frequency.

(Refer Slide Time: 04:47)

000 Fij : Frechin z Nodel strain energy for its mode, which is stored is the jits element z the structure Fig is given by the folly expression: (1) where (\$i) is the is mode shape vector (K) = splen sliffnen matrix Ki - contribution of js element to the inten stiffnen man

And F i j is the fraction of modal strain energy for i th mode which is true in the j th element of the structure. F i j is given by the following expression; F i j is phi i transpose

k j of phi i phi i transpose k of phi i. Where phi i is the i th mode shape vector, k is the system stiffness matrix and k j is the contribution of j th element to the system stiffness matrix.

A LO SANTA BUILDE CONTRACTOR OF A LO SANTA A

(Refer Slide Time: 06:59)

Once Z i is determined experimentally, F i j can be determined numerically. There are some special advantages of using vibration based SHM.

(Refer Slide Time: 07:31)

Specific advantages & using vibration. based strum	
- Busic feature of vibration-based stru	
Changes in shirtural characteristics, such as more, stiffin	5
and damping canoed by prevence of damage will	
affect the global vibration responsed the shathing	
Bysten	
Therefor, By examining the changes in the measured values?	
shutuand (vibration) charactivities & they solving the	
usverse proden shall help to Owentify the	
unknown changes is the onitival st sydem	
	-
	1

Let us see what are the specific advantages of using vibration based SHM. To understand this let us try to get back slightly back forth and think about what is the basic feature of vibration based SHM. The basic feature is changes in structural characteristics such as mass, stiffness and damping caused by presence of damage will affect the global vibration response of the structural system.

So, that is the basic feature. Therefore, by examining the changes in the measured values of structural characteristics that is vibration characteristics and then solving the inverse problem shall help to quantify the unknown changes in the original structural system.

(Refer Slide Time: 10:30)

		4/10210
Vibratian - bankd	stim consides z (5) steps:	N
Step#1: Measurement of s	Fuctural dynamic response	
ол о <u>с</u> т ₀ ч	- This is carried out by	set 2 series
	acquistic system a trasmin	rsian z dota
	- Acc, vel, disp) are keyin	sup is the
	measurement Itrey in	1 generale a
	bije volume of data	
	- Acquisiton L branningis	(data strage)
	shall be carefull oks	ind to alloid
	steb { 220]	
		7

Vibration based SHM consists of therefore, 5 steps. Step number 1 deals with measurement of structural dynamic response in terms of acceleration and displacement. This is essentially done by set of sensors, acquisition system and transmission of data. Acceleration, velocity and displacement are key issues in the measurement. They will generate a big volume of data.

Therefore, acquisition and transmission which includes data storage also should be carefully designed to avoid any loss of data.

(Refer Slide Time: 13:01)

	41	11,2218
Step #2: charge	tion zation & withat sheetwal model	
Of ray	4 bots static & dynamic ters	
	- Divisial characterization provides the base line for	
	company the repair & the shelter, before and	
	after dange	
	- while the vibration characteristics of the functional	
	shultion are obtained by continuou maintani	
	data acquired will be compared with The	
	bax lie model	
		-
		6

Step number 2, deals with characterization of initial structural model through both static and dynamic test. Initial characterization provides the baseline for comparing the response of the structure before and after damage, while the vibration characteristics of the functional structure are obtained by continuous monitoring.

Data acquired will be compared with the baseline model.

(Refer Slide Time: 14:58)

	(1001X)
510 #	
	contruity monistery and damage localizates of
	the shedier
	- data acquired stand carthursty should be avaly 3rd
	Chi and the the hear his sounded
	for is comparison with the bold we produce
	- they syniheast charge is the vibration cherelloth
	can be loading to a damage localization
	47
	**

Step number 3, involves a continuous monitoring and damage localization of the structure. During this process, data acquired and stored continuously should be analyzed

for it is comparison with the baseline model. Any significant change in the vibration characteristics can be leading to a damage localization.

(Refer Slide Time: 16:27)

϶ἆ≮·∣₿ℤ∎∎∎∎∎∎	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
	410391
Step #4	
	Defailed Finile Element Analytin to update
	the shickwal model with the input from the
	Observed damages
	There is a constant update of FEMaled is require
	to be carried out
Step#s	Evolution of the structural porformare
	} the updated model
	- The updated model shall reveal the
	healts stating the present shedal
	7
	K

Step number 4, deals with Detailed Finite Element Analysis to update the structural model with the input from the observed damages. So, there is a constant update of the finite element model is required to be carried out. And in the last step is Evaluation of the structural performance of the updated model.

Now, at this stage, the updated model shall reveal the health status of the present structure.

(Refer Slide Time: 18:27)

		4/11/2015
	Summary	
- defe	it of vibration - based stay	
- Vi	al steps is which is vibration boosed manifric wh	üch
	can lad to garrage localization,	
_ (necerity of high gurling/reliable servi and	۳,
	acquisilhi/communication motion with data	storage b
	retrived + powerful arolyhicul tools	2
	Ugase I E Morres	
		7

So friends, in this lecture, we focused on to learn details of vibration based Structural Health Monitoring. We understood what are the vital steps involved in vibration based monitoring which can lead to damage localization. We have also seen what would be the necessity of high quality and reliable sensing system, acquisition and communication system with good data storage and retrieval plus powerful analytical tools to update the finite element models.

We will further continue discussions on methods of SHM monitoring in the coming lectures.

Thank you very much.